精英家教网 > 高中数学 > 题目详情
11.函数$y=cos(\frac{π}{4}-2x)$最小正周期是π,单调减区间是[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

分析 由条件利用余弦函数的周期性和单调性,求得结论.

解答 解:函数$y=cos(\frac{π}{4}-2x)$=cos(2x-$\frac{π}{4}$)的最小正周期是$\frac{2π}{2}$=π,
令2kπ≤2x-$\frac{π}{4}$≤2kπ+π,求得 kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,
可得函数的单调减区间为[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z,
故答案为:π;[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

点评 本题主要考查余弦函数的周期性和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知,△ABC两边长分别为4,3,其夹角平分线长为2,则此三角形面积为$\frac{7\sqrt{95}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=4sin(2x-\frac{π}{6})$的一条对称轴方程是(  )
A.x=-$\frac{π}{12}$B.x=0C.x=$\frac{π}{6}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知同一平面内 圆O1和圆 O2的半径都等于1,圆心距离|O1O2|=4,P为动点,过点P分别作两圆切线,M、N为切点,使得|PM|=$\sqrt{2}|{PN}$|,试建立适当的平面直角坐标系,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin2x+sin2x-1.
(1)求函数f(x)的单调递增区间;
(2)设$f({\frac{x_0}{2}})=cos({\frac{π}{6}+α})cos({\frac{π}{6}-α})+{sin^2}α$,求sin2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱锥A-BCD的外接球半径为$\sqrt{13}$,AD=2,且满足$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{AB}•\overrightarrow{AD}$=$\overrightarrow{AC}•\overrightarrow{AD}=0$,则三棱锥A-BCD体积的最大值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了得到y=x2-2x+3的图象,只需将y=x2的图象(  )
A.向右平移1个单位,再向下平移2个单位
B.向右平移1个单位,再向上平移2个单位
C.向左平移1个单位,再向上平移2个单位
D.向左平移1个单位,再向下平移2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B,求集合D(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,则x的值是(  )
A.-2B.2或$-\frac{5}{2}$C.2或-2D.2或-2或$-\frac{5}{2}$

查看答案和解析>>

同步练习册答案