精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,则x的值是(  )
A.-2B.2或$-\frac{5}{2}$C.2或-2D.2或-2或$-\frac{5}{2}$

分析 分别令x2+1=5,或-2x=5,解出即可.

解答 解:若x2+1=5,解得:x=-2或x=2(舍),
若-2x=5,解得:x=-$\frac{5}{2}$(舍),
故选:A.

点评 本题考察了求函数值问题,考察分段函数,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数$y=cos(\frac{π}{4}-2x)$最小正周期是π,单调减区间是[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\overrightarrow{a}$与$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在边长为1的正方形OABC中任取一点,则该点落在阴影部分中的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=(8,\frac{1}{2}),\overrightarrow b=(x,1)$,其中x>0,若$(\overrightarrow a-2\overrightarrow b)∥(2\overrightarrow a+\overrightarrow b)$,则x=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d,其图象在点(1,f(1))处的切线斜率为0,若a<b<c,且函数f(x)的单调递增区间为(m,n),则n-m的取值范围是(  )
A.(1,$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设点A,B分别是x,y轴上的两个动点,AB=1.若$\overrightarrow{AC}$=λ$\overrightarrow{BA}$(λ>0).
(Ⅰ)求点C的轨迹Г;
(Ⅱ)过点D作轨迹Г的两条切线,切点分别为P,Q,过点D作直线m交轨迹Г于不同的两点E,F,交PQ于点K,问是否存在实数t,使得$\frac{1}{|DE|}$+$\frac{1}{|DF|}$=$\frac{t}{|DK|}$恒成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=ax,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)•f(x2)等于(  )
A.1B.aC.2D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆O:x2+y2=5和定点A(4,3),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|
(1)求实数a、b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

同步练习册答案