精英家教网 > 高中数学 > 题目详情
19.数列{an}满足2nan+1=(n+1)an,其前n项和为Sn,若${a_1}=\frac{1}{2}$,则使得$2-{S_n}<\frac{6}{5}{a_n}$最小的n值为(  )
A.8B.9C.10D.11

分析 由题意可得$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,运用等比数列的定义和通项公式可得an=n•($\frac{1}{2}$)n,再由数列的求和方法:错位相减法和等比数列的求和公式,可得Sn,解不等式可得n>10,即可得到所求n的最小值.

解答 解:∵2nan+1=(n+1)an
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,
若${a_1}=\frac{1}{2}$,
可得$\frac{{a}_{n}}{n}$=$\frac{{a}_{1}}{1}$•($\frac{1}{2}$)n-1=($\frac{1}{2}$)n
即有an=n•($\frac{1}{2}$)n
前n项和为Sn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n
$\frac{1}{2}$Sn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n+1
两式相减可得,$\frac{1}{2}$Sn=($\frac{1}{2}$)1+($\frac{1}{2}$)2+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1
化简可得Sn=2-(n+2)•($\frac{1}{2}$)n
则$2-{S_n}<\frac{6}{5}{a_n}$即为(n+2)•($\frac{1}{2}$)n<$\frac{6}{5}$n•($\frac{1}{2}$)n
化简可得n>10,
则n的最小值为11.
故选:D.

点评 本题考查数列的通项公式的求法,注意运用等比数列的定义和通项公式,考查数列的求和方法:错位相减法,同时考查不等式的解法,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,则△ABC为直角三角形(填“锐角”、“直角”或“钝角”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.随机变量X~N(1,4),若p(x≥2)=0.2,则p(0≤x≤1)为(  )
A.0.2B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)={log_a}({x^3}-ax)(a>0且a≠1)在区间(-\frac{1}{3},0)$内单调递增,则实数a的取值范围是(  )
A.$[\frac{2}{3},1)$B.$[\frac{1}{3},1)$C.$[\frac{1}{3},1)∪(1,3]$D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,$\overline z$是复数z的共轭复数,若$z=cos\frac{2π}{3}+isin\frac{2π}{3}$,则$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z在复平面内对应的点在射线y=2x(x≥0)上,且$|z|=\sqrt{5}$,则复数z的虚部为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)满足$f({x+1})=\frac{1}{f(x)+1}$,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,方程f(x)-4ax-a=0有两个不等的实根,则实数a的取值范围是(-∞,-1)∪(0,$\frac{1}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax+xlnx的图象在点A(e,f(e))处的切线斜率为3
(1)求a的值;
(2)求f(x)的单调区间;
(3)若不等式f(x)-kx+k>0对任意x∈(1,+∞)恒成立,求k的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${(x-\frac{2}{{\sqrt{x}}})^n}$的二项展开式中第五项和第六项的二项式系数最大,则各项的系数和为-1.

查看答案和解析>>

同步练习册答案