精英家教网 > 高中数学 > 题目详情
9.在△ABC中,若$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,则△ABC为直角三角形(填“锐角”、“直角”或“钝角”)

分析 诱导公式、两角和的正弦公式求得sin(A+B)=sinC=1,C为直角,从而得出结论.

解答 解:△ABC中,∵$sinAsin(\frac{π}{2}-B)=1-cos(\frac{π}{2}-B)cosA$,即sinAcosB=1-sinBcosA,
∴sin(A+B)=sinC=1,∴C=$\frac{π}{2}$,
故△ABC为直角三角形,
故答案为:直角.

点评 本题主要考查诱导公式、两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数$f(x)={e^2}x+\frac{1}{x},g(x)=\frac{ex}{{{e^{x-1}}}}$,对任意x1,x2∈(0,+∞),不等式(k+1)g(x1)≤kf(x2)(k>0)恒成立,则实数k的取值范围是(  )
A.[1,+∞)B.(2,+∞]C.(0,2)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)过点(6,3)作圆C的切线,求切线方程;
(Ⅲ)设直线l:y=x+m,且直线l被圆C所截得的弦为AB,以AB为直径的圆C1过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\frac{sinxcosx}{1+sinx-cosx}$的值域为[$-\frac{\sqrt{2}+1}{2}$,-1)∪(-1,$\frac{\sqrt{2}-1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sinx=$\frac{3}{5},且\frac{π}{2}$<x<π,则tanx=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{5}{13}$,且α为第三象限角,则tanα的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|y=lg(x-1)},B={y|y=$\sqrt{{x}^{2}+2x+5}$},则A∩(∁UB)=(  )
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的面积为1,点P满足$3\overrightarrow{AB}+2\overrightarrow{BC}+\overrightarrow{CA}=4\overrightarrow{AP}$,则△PBC的面积等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}满足2nan+1=(n+1)an,其前n项和为Sn,若${a_1}=\frac{1}{2}$,则使得$2-{S_n}<\frac{6}{5}{a_n}$最小的n值为(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案