精英家教网 > 高中数学 > 题目详情
16.已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为M,过点M的直线l′与抛物线C的交点为P,Q,延长PF交抛物线C于点A,延长QF交抛物线C于点B,若$\frac{|PF|}{|AF|}$+$\frac{|QF|}{|BF|}$=22,则直线l′的方程为y=±$\frac{\sqrt{6}}{6}$(x+2).

分析 设直线l′方程,代入抛物线方程,由韦达定理及抛物线的对称性即可求得m的值,求得直线l′的方程.

解答 解:抛物线C:y2=8x的焦点为F(2,0),设直线l′的方程x=my-2,
则$\left\{\begin{array}{l}{{y}^{2}=8x}\\{x=my-2}\end{array}\right.$,整理得:y2-8my+16=0,设A(x1,y1),B(x2,y2),
则△=64m2-64>0,即m2>1,
∴y1+y2=8m,y1y2=16,
由抛物线的对称性可知:$\frac{|PF|}{|AF|}$+$\frac{|QF|}{|BF|}$=$\frac{{y}_{1}}{{y}_{2}}$+$\frac{{y}_{2}}{{y}_{1}}$=4m2-2=22,解得:m2=6,
故m=±$\sqrt{6}$,
∴直线l′的方程为y=±$\frac{\sqrt{6}}{6}$(x+2),
故答案为:y=±$\frac{\sqrt{6}}{6}$(x+2).

点评 本题考查抛物线的性质,直线与抛物线的位置关系,抛物线的对称性,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.曲线y=ln(x+2)-3x在点(-1,3)处的切线方程为2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过正方体ABCD-A1B1C1D1的顶点A作平面α,使棱AB,AD,AA1所在直线与平面α所成角都相等,则这样的平面α可以作(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某通讯商推出两款流量套餐,详情如下:
 套餐名称 月套餐费(单位;元) 月套餐流量(单位,M)
 A 20 300
 B 30 500
这两款套餐都有如下的附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值200M流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200M流量,资费20元/次,依此类推,如果当流量有剩余,系统将自动清零,无法转入次月使用.
小王过去50个月的手机月使用流量(单位:M)频率分布表如下:
 月使用流量分组[100,200] (200,300] (300,400] (400,500] (500,600] (600,700]
 频数 4 11 12 18 4 1
根据小王过去50个月的收集月使用流量情况,回答下列问题:
(1)若小王订购A套餐,假设其手机月实际使用流量为x(单位:M,100≤x≤700)月流量费用y(单位:元),将y表示为x的函数;
(2)小王拟从A套餐或B套餐中选订一款,若以月平均费用作为决策依据,他应订购哪一种套餐?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.动点P在抛物线y=2x2+1上移动,若P与点Q(0,-1)连线的中点为M,则动点M的轨迹方程为(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,a1=1,a3=2a2,数列{an}前n项和Sn为(  )
A.Sn=2n-1B.Sn=2n-1C.Sn=n2D.Sn=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1-$\frac{1}{x}$-alnx(a∈R),g(x)=2x-ex(e=2.71828…是自然对数的底数).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)判断a>1时,f($\frac{1}{{e}^{a}}$)的符号;
(Ⅲ)若函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=3x+9x,则f(log32)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b,c分别为△ABC三内角A,B,C的对边,面积$S=\frac{1}{2}{c^2}$.若$ab=\sqrt{2}$,则a2+b2+c2的最大值是4.

查看答案和解析>>

同步练习册答案