精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{1}{3}$x3-x2+ax+b的图象在点P(0,f(0))处的切线方程是3x-y-2=0.
(1)求a、b的值;
(2)函数g(x)=f(x)+(m-3)x在(-2,+∞)上为增函数,求m的取值范围.

分析 (1)利用导数的几何意义求出切线的斜率,点斜式求得切线方程,和已知的切线方程比较系数可得a、b值;
(2)求出g(x)的导数,问题转化为m≥-x2+2x在x∈(-2,+∞)上恒成立,求出h(x)=-x2+2x的最大值,从而求出m的范围即可.

解答 解:(1)∵f(0)=b,∴点P (0,b),
∵f′(x)=x2-2x+a,
∴函数f(x)的图象在点P处的切线斜率为 a,
故此处的切线方程为  y-b=a (x-0),
即 y=ax+b,
又已知此处的切线方程为y=3x-2,
∴a=3,b=-2.
(2)∵f(x)=$\frac{1}{3}$x3-x2+3x-2,
∴g(x)=$\frac{1}{3}$x3-x2+3x-2+(m-3)x=$\frac{1}{3}$x3-x2+mx-2,
所以g′(x)=x2-2x+m,
又g(x)是(-2,+∞)上的增函数,
∴g′(x)≥0在x∈(-2,+∞)上恒成立,
即x2-2x+m≥0在x∈(-2,+∞)上恒成立,
即m≥-x2+2x在x∈(-2,+∞)上恒成立,
而h(x)=-x2+2x=-(x-1)2+1在(-2,1)递增,在(1,+∞)递减,
∴h(x)的最大值是h(1)=1,
故m≥1.

点评 本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.计算机系统、硬件系统、软件系统、CPU、存储器的结构图为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合P={x|x2-x-6<0},非空集合Q={x|2a≤x≤a+3},若P∪Q=P,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a,b均为不等于1的正数,利用对数的换底公式证明:
(1)logab=$\frac{1}{lo{g}_{b}a}$;
(2)log${\;}_{{a}^{n}}$bm=$\frac{m}{n}$logab(m∈R,n∈R,n≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.将下列参数方程化为普通方程,并说明它们各表示什么曲线
(1)$\left\{\begin{array}{l}x=\sqrt{t}+1\\ y=1-2\sqrt{t}\end{array}\right.(t为参数)$
(2)$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}\right.(θ为参数)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的非零向量,$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线.
(1)求实数λ的值;
(2)已知$\overrightarrow{e_1}$=(2,1),$\overrightarrow{e_2}$=(2,-2),点D(3,5),若A,B,C,D四点按逆时针顺序构成平行四边形,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个口袋中有2个白球和3个红球,每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ)求一次摸球中奖的概率p;
(Ⅱ)求三次摸球恰有一次中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示,an=($\frac{1}{3}$)n,把数列{an}的各项排成如下三角形:记A(s,t)表示第s行第t个数,则A(6,2)=($\frac{1}{3}$)38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)当m=2时,求(m23•m4的值;
(Ⅱ)计算:(0.25)-0.5+(-$\frac{1}{27}$)${\;}^{-\frac{1}{3}}$-6250.25

查看答案和解析>>

同步练习册答案