精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的非零向量,$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线.
(1)求实数λ的值;
(2)已知$\overrightarrow{e_1}$=(2,1),$\overrightarrow{e_2}$=(2,-2),点D(3,5),若A,B,C,D四点按逆时针顺序构成平行四边形,求点A的坐标.

分析 (1)可以利用三点共线,得到向量的线性关系,解出λ的值,得到本题结论,
(2)由已知几何条件得到向量间关系,再坐标化得到A点的坐标,即本题答案.

解答 解:(1)$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+(-$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$)=$\overrightarrow{{e}_{1}}$+(1+λ)$\overrightarrow{{e}_{2}}$.
∵A,E,C三点共线,
∴存在实数k,使得$\overrightarrow{AE}$=k$\overrightarrow{EC}$,
即$\overrightarrow{{e}_{1}}$+(1+λ)$\overrightarrow{{e}_{2}}$=k(-2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),
得(1+2k)$\overrightarrow{{e}_{1}}$=(k-1-λ)$\overrightarrow{{e}_{2}}$.
∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是平面内两个不共线的非零向量,
∴$\left\{\begin{array}{l}{1+2k=0}\\{λ=k-1}\end{array}\right.$,解得k=-$\frac{1}{2}$,λ=-$\frac{3}{2}$.
(2)$\overrightarrow{BC}$=$\overrightarrow{BE}$+$\overrightarrow{EC}$=-3$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$
=(-6,-3)+(-1,1)=(-7,-2).
∵A,B,C,D四点按逆时针顺序构成平行四边形,
∴$\overrightarrow{AD}$=$\overrightarrow{BC}$.
设A(x,y),则$\overrightarrow{AD}$=(3-x,5-y),
∵$\overrightarrow{BC}$=(-7,-2),
∴$\left\{\begin{array}{l}{3-x=-7}\\{5-y=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=10}\\{y=7}\end{array}\right.$,即点A的坐标为(10,7).

点评 本题考查了向量共线和向量的坐标运算,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.尘肺病是一种严重的职业病,新密市职工张海超“开胸验肺”的举动引起了社会的极大关注.据悉尘肺病的产生,与工人长期生活在粉尘环境有直接的关系.下面是一项调查数据:
有过粉尘环境工作经历无粉尘环境工作经历合计
有尘肺病22224
无尘肺病89814982396
合计92015002420
请由此分析我们有多大的把握认为是否患有尘肺病与是否有过粉尘环境工作经历有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x2+k$\sqrt{1-{x}^{2}}$.任取实数a,b,c∈[-1,1],以f(a),f(b),f(c)为三边长可以构成三角形,则实数k的取值范围为(4-2$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且A,$\frac{B}{4}$,C成等差数列.
(1)若b=$\sqrt{13}$,a=3,求c的值;
(2)设y=sinA•sinC,求y的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-x2+ax+b的图象在点P(0,f(0))处的切线方程是3x-y-2=0.
(1)求a、b的值;
(2)函数g(x)=f(x)+(m-3)x在(-2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)满足f(0)=0,且在[0,+∞)上单调递增,若f(lg x)>0,则x的取值范围是(  )
A.(0,1)B.(1,10)C.(1,+∞)D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.经过点(2,0)且与曲线y=$\frac{4}{x}$相切的直线方程为4x+y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有一条笔直的河流,仓库A到河岸所在直线MN的距离是10km,AC⊥MN于C,码头B到C的距离为20km.现有一批货物要从A运到B.已知货物走陆路时,单位里程的运价是水路的2倍,货物走陆路到达D后再由水路到达B,问点D应选在离C多远处才能使总运费最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=x2+2ax+a2在区间[-1,2]上的最大值是4,则实数a的值为0或-1.

查看答案和解析>>

同步练习册答案