精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C的对边分别为a,b,c,且A,$\frac{B}{4}$,C成等差数列.
(1)若b=$\sqrt{13}$,a=3,求c的值;
(2)设y=sinA•sinC,求y的值域.

分析 根据题意求出B的值为$\frac{2π}{3}$,
(1)利用余弦定理即可求得c的值;
(2)根据B的值,用A表示出C,化简函数y为正弦型函数,根据A的取值范围,即可求出y的值域.

解答 解:△ABC中,角A,$\frac{B}{4}$,C成等差数列,
∴$\frac{B}{2}$=A+C,又A+B+C=π,
∴$\frac{B}{2}$=π-B,解得B=$\frac{2π}{3}$;
(1)当b=$\sqrt{13}$,a=3时,由余弦定理b2=a2+c2-2accosB得:
13=9+c2-2×3c•cos$\frac{2π}{3}$,
整理得c2+3c-4=0,
解得c=1或c=-4(不合题意,舍去),
∴c的值为1;
(2)∵B=$\frac{2π}{3}$,∴C=$\frac{π}{3}$-A,
∴y=sinA•sinC
=sinA•sin($\frac{π}{3}$-A)
=sinA•(sin$\frac{π}{3}$cosA-cos$\frac{π}{3}$sinA)
=$\frac{\sqrt{3}}{2}$sinAcosA-$\frac{1}{2}$sin2A
=$\frac{\sqrt{3}}{4}$sin2A+$\frac{1}{4}$cos2A-$\frac{1}{4}$
=$\frac{1}{2}$($\frac{\sqrt{3}}{2}$sin2A+$\frac{1}{2}$cos2A)-$\frac{1}{4}$
=$\frac{1}{2}$sin(2A+$\frac{π}{6}$);
又0<A<$\frac{π}{3}$,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(2A+$\frac{π}{6}$)≤1,
∴$\frac{1}{4}$<y≤$\frac{1}{2}$,
即函数y的值域是($\frac{1}{4}$,1].

点评 本题考查了三角恒等变换的应用问题,也考查了余弦定理的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}、{bn}分别是等差数列、等比数列,且满足a3=8,a6=17,b1=2,b1b2b3=9(a2+a3+a4).
(1)分别求数列{an}、{bn}的通项公式;
(2)设cn=log3bn,求证:数列{cn}是等差数列,并求其公差d′和首项c1
(3)设Tn=b1+b4+b7+…+b3n-2,其中n=1,2,…,求Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某食品安检部门调查一个养殖场的养殖鱼的有关情况,安检人员从这个养殖场中不同位置共捕捞出100条鱼,称得每条鱼的重量(单位:千克),并将所得数据进行统计得如表.
鱼的重量[1.00,1.05)[1.05,1.10)[1.10,1.15)[1.15,1.20)[1.20,1.25)[1.25,1.30)
鱼的条数320353192
若规定重量大于或等于1.20kg的鱼占捕捞鱼总量的15%以上时,则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.
(1)根据统计表,估计数据落在[1.20,1.30)中的概率约为多少,并判断此养殖场所饲养的鱼是否有问题?
(2)上面所捕捞的100条鱼中,从重量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼的重量在[1.00,1.05)和[1,.25,1.30)中各有1条的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=x2-2lnx的单调递减区间是(  )
A.(-∞,-1]∪(0,1]B.[-1,0)∪(0,1]C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a,b均为不等于1的正数,利用对数的换底公式证明:
(1)logab=$\frac{1}{lo{g}_{b}a}$;
(2)log${\;}_{{a}^{n}}$bm=$\frac{m}{n}$logab(m∈R,n∈R,n≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈R,若对任意的x>0时均有[(a-1)x-1]•(x2-ax-1)≥0,则a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的非零向量,$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线.
(1)求实数λ的值;
(2)已知$\overrightarrow{e_1}$=(2,1),$\overrightarrow{e_2}$=(2,-2),点D(3,5),若A,B,C,D四点按逆时针顺序构成平行四边形,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(a+$\frac{1}{a}$)x+1.
(1)当a=$\frac{1}{2}$时,求关于x的不等式f(x)≤0的解集;
(2)当a>0时,求关于x的不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\left\{\begin{array}{l}{(2a-4)x-a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是R上的增函数,则a的取值范围是(2,4].

查看答案和解析>>

同步练习册答案