精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)满足f(0)=0,且在[0,+∞)上单调递增,若f(lg x)>0,则x的取值范围是(  )
A.(0,1)B.(1,10)C.(1,+∞)D.(10,+∞)

分析 根据函数题意,得出f(lg x)>0时lgx>0,从而求得x的取值范围.

解答 解:∵函数f(x)满足f(0)=0,且在[0,+∞)上单调递增,
∴当f(lg x)>0时,lgx>0,
解得x>1;
∴x的取值范围是(1,+∞).
故选:C.

点评 本题考查了函数的单调性质的应用问题,也考查了对数函数的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知x,y满足(x-1)2+y2=1,则2x+y的最大值为$\sqrt{5}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=x2-2lnx的单调递减区间是(  )
A.(-∞,-1]∪(0,1]B.[-1,0)∪(0,1]C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈R,若对任意的x>0时均有[(a-1)x-1]•(x2-ax-1)≥0,则a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面内两个不共线的非零向量,$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线.
(1)求实数λ的值;
(2)已知$\overrightarrow{e_1}$=(2,1),$\overrightarrow{e_2}$=(2,-2),点D(3,5),若A,B,C,D四点按逆时针顺序构成平行四边形,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知随机变量X~N(0,σ2),且P(X>2)=0.4,则P(-2≤X≤0)=(  )
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(a+$\frac{1}{a}$)x+1.
(1)当a=$\frac{1}{2}$时,求关于x的不等式f(x)≤0的解集;
(2)当a>0时,求关于x的不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与抛物线y2=4x的焦点重合,离心率e=$\frac{1}{2}$,F1,F2分别为左、右焦点,AB是过右焦点的弦.
(I)求椭圆C的标准方程;
(II)求△ABF1的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=Asin(ωx+φ)(A>0,ω>0)的最大值为4,最小值为-4,最小正周期为$\frac{π}{2}$,直线x=$\frac{π}{3}$是其图象的一条对称轴,则符合条件的函数解析式是(  )
A.y=4sin(4x+$\frac{π}{6}$)B.y=4sin(4x+$\frac{π}{3}$)C.y=2sin(4x+$\frac{π}{3}$)D.y=2sin(4x+$\frac{π}{6}$)

查看答案和解析>>

同步练习册答案