精英家教网 > 高中数学 > 题目详情
为迎接2015年在兰州举行的“中国兰州国际马拉松比赛”,某单位在推介晚会中进行嘉宾现在抽奖活动,抽奖盒中装有大小相同的6个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个球都印有“兰州马拉松”标志即可获奖.并停止取球;否则继续,但每位嘉宾最多抽取3次,已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为
4
5

(Ⅰ)求盒中印有“兰州马拉松”标志的小球的个数;
(Ⅱ)若用η表示这位嘉宾抽取的次数,求η的分布列和期望.
考点:离散型随机变量的期望与方差,离散型随机变量及其分布列
专题:概率与统计
分析:(Ⅰ)设印有“绿色金城行”的球有n个,同时抽两球不都是“绿色金城行”标志为事件A,由对立事件的概率:P(A)=1-P(
.
A
)
=
4
5
,即P(
.
A
)=
C
2
n
C
2
6
=
1
5
,由此能求出n.
(Ⅱ)由已知,两种球各三个,η可能取值分别为1,2,3,分别求出相应的概率,由此能求出η的分布列和期望.
解答: 解:(Ⅰ)设印有“绿色金城行”的球有n个,
同时抽两球不都是“绿色金城行”标志为事件A,
则同时抽取两球都是“绿色金城行”标志的概率是P(
.
A
)=
C
2
n
C
2
6

由对立事件的概率:P(A)=1-P(
.
A
)
=
4
5

即P(
.
A
)=
C
2
n
C
2
6
=
1
5
,解得n=3.…(6分)
(Ⅱ)由已知,两种球各三个,η可能取值分别为1,2,3,
P(η=1)=
C
2
3
C
2
6
=
1
5

P(η=2)=
C
2
3
C
2
6
C
2
3
C
2
6
+
C
1
3
C
1
3
C
2
6
C
2
3
C
2
6
=
4
25

P(η=3)=1-P(η=1)-P(η=2)=
16
25

则η 的分布列为:
η123
P
1
5
4
25
16
25
所以Eη=1×
1
5
+2×
4
25
+3×
16
25
=
61
25
.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直棱柱ABC-A′B′C′中,底面是边长为3的等边三角形,AA′=4,M为AA′的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC′到M的最短路线长为
29
,设这条最短路线与CC′的交点为N.求:
(1)该三棱柱的侧面展开图的对角线长;
(2)PC与NC的长;
(3)三棱锥C-MNP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(sinx,2cosx),
n
=(2cosx,cosx),f(x)=
m
n
-1

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若θ为锐角,且f(θ+
π
8
)=
2
3
,求tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某试验范围为[22,43],等分为21段,用分数法,则第一试点应安排在
 
处.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,且椭圆C的短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P,M,N椭圆C上的三个动点.
(i)若直线MN过点D(0,-
1
2
),且P点是椭圆C的上顶点,求△PMN面积的最大值;
(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X服从正态分布N(80,σ2)(满分为100分),已知P(X<75)=0.3,P(X≥95)=0.1,现从该市高三学生随机抽取三位同学.
(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;
(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC=3,CA=4,AB=5,M是边AB上的动点(含A,B两个端点).若
CM
CA
CB
(λ,μ∈R),则|λ
CA
CB
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是边长为2的正三角形,以AC为直径作半圆O(如图),P为半圆上任一点,则
BC
BP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当a.b.c均为正实数时,给出以下三个不等式:
a2-ab+b2
b2-bc+c2
+
c2-ac+a2

a2-ab+b2
b2-bc+c2
+
c2+a2

a2-ab+b2
b2+c2
+
c2+a2

其中,一定成立的不等式的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案