精英家教网 > 高中数学 > 题目详情
已知某试验范围为[22,43],等分为21段,用分数法,则第一试点应安排在
 
处.
考点:分数法
专题:计算题,函数的性质及应用
分析:由题知试验范围为[22,43],可得区间长度为121,故可把该区间等分成21段,利用分数法选取试点进行计算.
解答: 解:由已知试验范围为[22,43],可得区间长度为121,将其等分21段,
利用分数法选取试点:x1=22+
13
21
×(43-22)=35,
故答案为:35.
点评:本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(Fn-1).(2)所有可能的试点总数大于某一(Fn-1),而小于(Fn+1-1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数集R内,我们用“<”为全体实数排了一个“序”,类似的,我们在向量集上也可以定义一个“序”的关系,记为“?”,定义如下:对于任意两个向量
m1
=(x1,y1)•(x1,y1∈R),
m2
=(x2,y2)•(x2,y2∈R),当取仅当“x1<x2“或“x1=x2且y1<y2∈R”时,
m1
?
m2
,按上述定义的关系“?”,给出如下四个命题:
①若
m1
?
m2
,则|
m1
|≤|
m2
|;
②若
m1
?
m2
m2
?
m3
,则,则
m1
?
m3

③若
m1
?
m2
,则对于任意
m
,都有(
m1
+
m
)?(
m2
+
m
)成立;
④对于实数λ≥0,若
m1
?
m2
,则λ
m1
m2
成立;
其中所有命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则(
PA
+
PB
)•
PC
的最小值为(  )
A、
9
2
B、9
C、-
9
2
D、-9

查看答案和解析>>

科目:高中数学 来源: 题型:

云浮市质监部门为迎接2015年春节到来,从市场中随机抽取100个不同生产厂家的某种产品检验质量,按重量(单位;g)分组(重量大的质量高),得到的频率分布表如图所示:
组号重量分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再完成下列频率分布直方图;
(2)由于该产品要求质量高,决定在重量大的第3,4,5组中用分层抽样抽取6个产品再次检验,求第3,4,5组每组各抽取多少产品进入第二次检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线E是由抛物线弧E1:y2=4x(0≤x≤
2
3
)与椭圆弧E2
x2
a2
+
y2
b2
=1(
2
3
≤x≤a)所围成的封闭曲线,且E1与E2有相同的焦点.
(Ⅰ)求椭圆弧E2的方程;
(Ⅱ)设过点F(1,0)的直线与曲线E交于A,B两点,|FA|=r1,|FB|=r2,且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABC-A1B1C1外接球表面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接2015年在兰州举行的“中国兰州国际马拉松比赛”,某单位在推介晚会中进行嘉宾现在抽奖活动,抽奖盒中装有大小相同的6个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个球都印有“兰州马拉松”标志即可获奖.并停止取球;否则继续,但每位嘉宾最多抽取3次,已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为
4
5

(Ⅰ)求盒中印有“兰州马拉松”标志的小球的个数;
(Ⅱ)若用η表示这位嘉宾抽取的次数,求η的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的棱长为a.点E,F分别是棱AC,BD的中点,则
AE
AF
的值是(  )
A、a2
B、
1
2
a2
C、
1
4
a2
D、
3
4
a2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
1
2
+
an-an2
,且a1=
1
2
,则该数列的前2015项的和等于
 

查看答案和解析>>

同步练习册答案