精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,“双曲线C的标准方程为$\frac{x^2}{16}$-$\frac{y^2}{9}$=1”是“双曲线C的渐近线方程为y=±$\frac{3}{4}$x”成立的充分非必要条件.(填“充要”、“充分非必要”、“必要非充分”、“非充分非必要”中的一种)

分析 利用双曲线的渐近线的定义及其求法即可判断出结论.

解答 解:双曲线C的标准方程为$\frac{x^2}{16}$-$\frac{y^2}{9}$=1”可得:“双曲线C的渐近线方程为y=±$\frac{3}{4}$x”,反之不成立,例如双曲线$\frac{{x}^{2}}{64}-\frac{{y}^{2}}{36}$=1是渐近线方程仍然为y=±$\frac{3}{4}$x.
∴,“双曲线C的标准方程为$\frac{x^2}{16}$-$\frac{y^2}{9}$=1”是“双曲线C的渐近线方程为y=±$\frac{3}{4}$x”成立的充分非必要条件.
故答案为:充分非必要.

点评 本题考查了双曲线的标准方程及其性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知直线y=1-x与双曲线ax2+by2=1(a>0,b<0)的渐近线交于A,B两点,且过原点和线段AB中点的直线的斜率为$-\frac{{\sqrt{3}}}{2}$,则$\frac{a}{b}$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{{2\sqrt{3}}}{3}$C.$-\frac{{9\sqrt{3}}}{2}$D.$-\frac{{2\sqrt{3}}}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若全集U=R,集合A={x|1<2x<4},B={x|x-1>0},则A∩(∁UB)=(  )
A.{x|0<x≤1}B.{x|1<x<2}C.{x|0<x<1}D.{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设不等式组$\left\{\begin{array}{l}{x-y+4≥0}\\{x+y≥0}\\{x≤1}\end{array}\right.$表示的平面区域为Ω1,不等式组$\left\{\begin{array}{l}{-2≤x≤1}\\{-1≤y≤5}\end{array}\right.$表示的平面区域为Ω2,在区域Ω2内随机取一点,则该点是取自于区域Ω1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}满足a1=1,且对任意的m,n∈N*都有am+n=am+an+mn,则$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{{{a_{2016}}}}$等于$\frac{4032}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有(  )
A.a>bB.a<b
C.a=bD.a,b的大小与m,n的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,A=60°,a2=bc,则△ABC一定是(  )
A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知Sn为数列{an}的前n项和,且a1=1,a2=3,an+2=3an,则S2016=(  )
A.2×(31008-1)B.2×31008C.$\frac{{{3^{2016}}-1}}{2}$D.$\frac{{{3^{2016}}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设点E,F分别是棱长为2的正方体ABCD-A1B1C1D1的棱AB,AA1的中点.如图,以C为坐标原点,射线CD、CB、CC1分别是x轴、y轴、z轴的正半轴,建立空间直角坐标系
(1)求向量$\overrightarrow{{D_1}E}$与$\overrightarrow{{C_1}F}$的数量积;
(2)若点M,N分别是线段D1E与线段C1F上的点,问是否存在直线MN,MN⊥平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案