精英家教网 > 高中数学 > 题目详情
已知焦点在y轴,顶点在原点的抛物线C1经过点P(2,2),以C1上一点C2为圆心的圆过定点A(0,1),记M、N为圆C2与x轴的两个交点.
(1)求抛物线C1的方程;
(2)当圆心C2在抛物线上运动时,试判断|MN|是否为一定值?请证明你的结论.
考点:直线与圆锥曲线的关系,抛物线的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出抛物线方程,代入P,即可求出抛物线的方程;
(2)表示出圆被x轴截得的弦长,利用圆心在抛物线上,即可得出结论
解答: 解:(1)由已知,设抛物线方程为x2=2py,则
代入P(2,2),可得p=1,
∴抛物线C1的方程为x2=2y;
(2)设圆的圆心M(a,b),则圆的半径为
a2+(b-1)2

∴圆被x轴截得的弦长为|MN|=2
r2-b2
=2
a2+2-2b+1-b2
=2
a2-2b+1

∵a2=2b,
∴|MN|=2;
∴|MN|是一定值.
点评:本题考查了待定系数法是求圆锥曲线的常用方法,弦长公式的运用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不使用计算器,计算下列各题:
(1)0.001 -
1
3
-(
7
8
0+16 
3
4
+(
2
-
33
6
(2)log3
27
+lg25+lg4+7 log72+(-9.8)0

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
①若|
a
b
|=|
a
|•|
b
|,则
a
b

a
=(-1,1)在
b
=(3,4)方向上的投影为
1
5

③若△ABC中,a=5,b=8,c=7,则
BC
CA
=20;
④若非零向量
a
b
满足|
a
+
b
|=|
b
|,则|2
b
|>|
a
+2
b
|.
所有真命题的标号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装经销商经销某品牌的牛仔裤,采用打折的方法促销:5条以上享受批发价,可以打9折;10条以上可以打8.5折,20条以上可以打7.5折,50条以上可以打6折.试建立顾客享受折扣价与购买牛仔裤数量之间的函数关系,并作出函数的图象(注:打9折是指打折后的价格为原价的90%,打8.5折是指打折后的价格为原价的85%,依此类推).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为{x|x≠0,x∈R},在y轴右侧的图象如图,且f(3)=0,则不等式f(x)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“对c≤-
1
2
x∈R,x2+4cx+1>0”是假命题,则实数c的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据表格中的数据,可以断定方程ex-(2x+4)=0(e≈2.72)的一个根所在的区间是(  )
x-10123
ex0.3712.707.2919.68
2x+4246810
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是偶函数,且在(0,+∞)上是减函数,又f(-2)=0,则满足不等式f(x)<0的x取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1≠0,2an-a1=S1Sn,n∈N*.
(Ⅰ)求a1,并求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和.

查看答案和解析>>

同步练习册答案