设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和.
解:(1)令n=1,得2a1-a1=
,即a1=
.
因为a1≠0,所以a1=1.
令n=2,得2a2-1=S2=1+a2,解得a2=2.
当n≥2时,由2an-1=Sn,2an-1-1=Sn-1两式相减,
得2an-2an-1=an,即an=2an-1.
于是数列{an}是首项为1,公比为2的等比数列.
因此,an=2n-1.所以数列{an}的通项公式为an=2n-1.
(2)由(1)知,nan=n·2n-1.
记数列{n·2n-1}的前n项和为Bn,
于是Bn=1+2×2+3×22+…+n×2n-1,①
2Bn=1×2+2×22+3×23+…+n×2n.②
①-②,得-Bn=1+2+22+…+2n-1-n·2n=2n-1-n·2n.
从而Bn=1+(n-1)·2n.
科目:高中数学 来源: 题型:
已知真命题:若A为⊙O内一定点,B为⊙O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是以O,A为焦点,OB长为长轴长的椭圆.类比此命题,写出另一个真命题:若A为⊙O外一定点,B为⊙O上一动点,线段AB的垂直平分线交直线OB于点P,则点P的轨迹是__________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:
![]()
将三角形数1,3, 6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b2012是数列{an}中的第 项;
(2)b2k-1= .(用k表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com