精英家教网 > 高中数学 > 题目详情
20.轴截面为等腰直角三角形的圆锥,侧面积与底面积之比为(  )
A.3:1B.$\sqrt{3}$:1C.2:1D.$\sqrt{2}$:1

分析 根据圆锥的结构特征可知底面半径r与高h相等,代入面积公式求出比值.

解答 解:设圆锥的底面半径为r,高为h,母线为l.
则h=r,l=$\sqrt{2}r$.
S侧面积=πrl=$\sqrt{2}π{r}^{2}$.S底面积=πr2
侧面积:S底面积=$\sqrt{2}$:1.
故选:D.

点评 本题考查了圆锥的结构特征,圆锥的面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.记集合A={x|x-a>0},B={y|y=sinx,x∈R},若0∈A∩B,则a的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{{x{a^x}}}{|x|}$(0<a<1)的图象的大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若向量$\overrightarrow{a}$=(2,4)与向量$\overrightarrow{b}$=(x,6)垂直,则实数x=(  )
A.12B.-12C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(文科)已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}{a}_{i}={a}_{1}+{a}_{2}+…+{a}_{n}$;
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“绝对差有界函数”;
(2)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)均为“绝对差有界函数”,当[a,b]=[1,2]时,判断g(x)=$\sqrt{x}$是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由;
(3)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x};0<x≤1}\\{0;x=0}\end{array}\right.$不是[0,1]上的“绝对差有界函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,nan+1=2(n+1)an(n∈N.)
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn
(3)在第(2)问的条件下,若不等式(-1)nλ(4-Sn)≤1对任意的n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高三文科500名学生参加了3月份的高考模拟考试,学校为了了解高三文科学生的历史、地理学习情况,从500名学生中抽取100名学生的成绩进行统计分析,抽出的100名学生的地理、历史成绩如表:
历史      地理[80,100][60,80)[40,60)
[80,100]8m9
[60,80)9n9
[40,60)8157
(Ⅰ) 若历史成绩在[80,100]区间的占30%,
(i)求m,n的值;
(ii)估计历史和地理的平均成绩及方差(同一组数据用该组区间的中点值作代表),并估计哪个学科成绩更稳定;
(Ⅱ)在地理成绩在[60,80)区间的学生中,已知m≥10,n≥10,求事件“|m-n|≤5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的图象分别向左和向右移动$\frac{π}{3}$之后的图象的对称中心重合,则正实数ω的最小值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设数列{an}和{bn}分别是等差数列与等比数列,且a1=b1=9,a7=b7=1,则以下结论正确的是(  )
A.a3<a4B.a4>b4C.a4<b4D.b3<b4

查看答案和解析>>

同步练习册答案