精英家教网 > 高中数学 > 题目详情

已知ω>0,a=(2sinωx+cosωx,2sinωx-cosωx),b=(sinωx,cosωx).f(x)=a·b.f(x)图象上相邻的两个对称轴的距离是.
(1)求ω的值;
(2)求函数f(x)在区间上的最大值和最小值.

(1)1(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)化简
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知均为锐角,且
(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(,0),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).
(1)若a∥b,求sinθ和cosθ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·盐城二模)已知函数f(x)=4sinxcos(x+)+.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最大值和最小值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函数f(x)=
m·(m+n)+t的图象中,对称中心到对称轴的最小距离为,且当x∈[0,]时,f(x)的最大值为1.
(1)求函数f(x)的解析式.
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若sinα=,sinβ=,且α、β均为锐角,求α+β的值.

查看答案和解析>>

同步练习册答案