精英家教网 > 高中数学 > 题目详情
15.将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位长度,所得图象关于点$({\frac{3π}{4},0})$对称,则ω的最小值是(  )
A.$\frac{1}{3}$B.1C.$\frac{5}{3}$D.2

分析 根据函数y=Asin(ωx+φ)的图象变换规律,所得函数的解析式为y=sinω(x-$\frac{π}{4}$),再根据正弦函数的图象的对称性,求得ω的值.

解答 解:将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位长度,
可得y=sinω(x-$\frac{π}{4}$)=sin(ωx-$\frac{ωπ}{4}$)的图象,
再根据所得图象关于点$({\frac{3π}{4},0})$对称,可得ω•$\frac{3π}{4}$•-$\frac{ωπ}{4}$=kπ,k∈Z,
求得ω=2k,k∈Z,结合所给的选项,可取ω=2,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某化妆品企业拟在2016年通过广告促销活动推销产品,经调查测算,产品的年销售(假定年产量=年销售量)y万件与年广告费用x(x≥0)万元满足关系式:y=-$\frac{1}{3}$x3+81x+234,则在2016年使年销售量达到最高时,该厂广告促销费用需投入(  )
A.13万元B.12万元C.11万元D.9万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的各项均为正数,且a1+6a2=1,a32=9a1a7
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3a1+log3a2+log3a3+…+log3an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}通项为an=$\left\{\begin{array}{l}{2n-1(n=2k-1,k∈N*)}\\{{2}^{n}(n=2k,k∈N*)}\end{array}\right.$,求它的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,-2≤x≤-1}\\{ln(x+2),-1<x≤2}\end{array}\right.$,若g(x)=f(x)-a(x+2)的图象与x轴有3个不同的交点,则实数a的取值范围是(  )
A.(0,$\frac{1}{e-1}$)B.(0,$\frac{1}{3e}$)C.[$\frac{ln2}{2}$,$\frac{1}{e}$)D.[$\frac{2ln2}{3}$,$\frac{1}{3e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知1+zi=z-2i,则复数z的虚部为(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{3}{2}$iD.$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=sin(2x+$\frac{π}{6}$)的图象向左平移φ(0<φ≤$\frac{π}{2}$)个单位长度,所得的图象关于y轴对称,则φ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正数a,b满足a+b=1,则T=(a+$\frac{1}{b}$)2+(b+$\frac{1}{a}$)2的最小值是$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.欧位在1748年给出的著名公式e=cosθ+isinθ(欧拉公式)是数学中最卓越的公式之一,其中,底数e=2.71828…,根据欧拉公式e=cosθ-isinθ.任何一个复数z=r(cosθ+isinθ)都呆以表示成z=reiz的形式,我们把这种形式叫做复数的指数形式,若复数z1=2ei${\;}^{\frac{π}{3}}$,z2=ei${\;}^{\frac{π}{2}}$,则复数z=$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案