精英家教网 > 高中数学 > 题目详情
9.已知点A(1,3),B(-5,1),直线L关于A、B对称,则L的方程是(  )
A.3x-y-8=0B.3x+y+4=0C.3x-y+6=0D.3x+y+2=0

分析 由题意,即求AB的垂直平分线方程.

解答 解:由题意,即求AB的垂直平分线方程,
AB的中点坐标为(-2,2),AB的斜率为$\frac{1-3}{-5-1}$=$\frac{1}{3}$,
∴L的方程是y-2=-3(x+2),即3x+y+4=0,
故选:B.

点评 本题考查直线方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=log${\;}_{\frac{1}{3}}$(x2-5x+4)的定义域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=x3-ax在区间[0,+∞)内单调递增,则a的最大值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a=$\frac{2}{π}\int_{-1}^1{(\sqrt{1-{x^2}}+sinx)dx}$,则二项式${(x-\frac{a}{x^2})^9}$的展开式中的常数项为-84.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(-1,2),若$\overrightarrow{MA}•\overrightarrow{MB}=0$,则直线l的斜率k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足an=$\left\{\begin{array}{l}{(5-a)n-11,n≤5}\\{{a}^{n-4},n>5}\end{array}\right.$,且{an}是递增数列,则实数a的取值范围是(  )
A.(1,5)B.($\frac{7}{3}$,5)C.[$\frac{7}{3}$,5)D.(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,边a、b、c分别是角A、B、C的对边,若bcosC=(3a-c)cosB,则cosB=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数y=f(x)在x0处可导,f′(x0)=a,若点(x0,0)即为y=f(x)的图象与x轴的交点,则$\underset{lim}{n→+∞}$[nf(x0-$\frac{1}{n}$)]等于(  )
A.+∞B.aC.-aD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x-1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值,并求出取得最值时的x值.

查看答案和解析>>

同步练习册答案