| A. | |BM|是定值 | B. | 点M在某个球面上运动 | ||
| C. | 存在某个位置,使DE⊥A1C | D. | 存在某个位置,使MB∥平面A1DE |
分析 取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得D正确;由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,M是在以B为圆心,MB为半径的圆上,可得A,B正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得C不正确.
解答 解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,
∴MB∥平面A1DE,故D正确
由∠A1DE=∠MFB,MF=$\frac{1}{2}$A1D=定值,FB=DE=定值,
由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,故A正确.
∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故B正确,
∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,
∴存在某个位置,使DE⊥A1C不正确.
故选:C.
点评 掌握线面、面面平行与垂直的判定和性质定理及线面角、二面角的定义及求法是解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4} | B. | {1,2,3,5} | C. | {1,2,5} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | r1>r3>r4>r2 | B. | r3>r1>r2>r4 | C. | r3>r1>r4>r2 | D. | r1>r3>r2>r4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com