精英家教网 > 高中数学 > 题目详情
已知全集U=R,A={x|2x2-x-6>0},B={x|
x-4
x+3
≤0},求A∩B,A∪B,(∁UA)∩B.
考点:交、并、补集的混合运算
专题:集合
分析:分别求出A与B中不等式的解集确定出A与B,进而求出A与B的交集,并集,A的补集,找出A补集与B的交集即可.
解答: 解:由A中不等式变形得:(2x+3)(x-2)>0,
解得:x<-
3
2
或x>2,即A=(-∞,-
3
2
)∪(2,+∞),∁UA=[-
3
2
,2],
由B中不等式变形得:(x-4)(x+3)≤0,且x+3≠0,
解得:-3<x≤4,即B=(-3,4],
则A∩B=(-3,-
3
2
)∪(2,4],A∪B=R,(∁UA)∩B=[-
3
2
,2].
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式组
x≤4
y≥0
y≤nx(x∈N*)
所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点).
(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;
(2)求数列{an}的通项公式;
(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*恒有
S1
22S2
+
S2
32S3
+…+
Sn
(n+1)2Sn+1
5
12
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:
(1)
1
2
x2≤2;
(2)23-2x<0.53x-4

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知f(x)=ax3+3x2-x+1,a∈R.
(1)若f(x)的曲线在x=1处的切线与直线y=x+1垂直,求a的值及切线方程;
(2)若对?x∈R对,不等式f'(x)≤4x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=-2,(
π
2
<x<π),求下列各式的值:
(1)
cosx-sinx
sinx-cosx

(2)
1-2sinxcosx
cos2x-sin2x

(3)
2
3
sin2x+
1
4
cos2
x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且an和Sn满足4Sn=(an+1)2(n=1,2,3…).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,求{bn}的前n项和Tn
(Ⅲ)在(Ⅱ)的条件下,对任意n∈N*,Tn
m
32
都成立,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+3x+2有极值,
(Ⅰ)求a的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,对任意的x,x′∈R,均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3,f(x)是减函数,求y=f(x)在[m,n](m,n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
的夹角为60°,|
a
|=2,|
b
|=3,则|
a
-
b
|=
 

查看答案和解析>>

同步练习册答案