【题目】如图,三棱锥
的侧棱长都相等,底面
与侧面
都是以
为斜边的等腰直角三角形,
为线段
的中点,
为直线
上的动点,若平面
与平面
所成锐二面角的平面角为
,则
的最大值是( )
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在
之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布
,其中
近似为样本平
均数
,
近似为样本方差
.
(i)利用该正态分布,求
;
(ii)央视媒体平台从年龄在
和
的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间
的人数是Y,求变量Y的分布列和数学期望.附:
,若
,则
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,椭圆
上的点到其左焦点
的最大距离为
.
(1)求椭圆的标准方程;
(2)过椭圆
左焦点
的直线
与椭圆
交于
两点,直线
,过点
作直线
的垂线与直线
交于点
,求
的最小值和此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采购经理指数(PMI)是衡量一个国家制造业的“体检表”,是衡量制造业在生产新订单、商品价格、存货、雇员、订单交货、新出口订单和进口等八个方面状况的指数,下图为2018年9月—2019年9月我国制造业的采购经理指数(单位:%).
![]()
(1)求2019年前9个月我国制造业的采购经理指数的中位数及平均数(精确到0.1);
(2)从2019年4月—2019年9月这6个月任意选取2个月,求这两个月至少有一个月采购经理指数与上个月相比有所回升的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数,将曲线
经过伸缩变换
后得到曲线
.在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)说明曲线
是哪一种曲线,并将曲线
的方程化为极坐标方程;
(2)已知点
是曲线
上的任意一点,又直线
上有两点
和
,且
,又点
的极角为
,点
的极角为锐角.求:
①点
的极角;
②
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
过点
且渐近线为
,则下列结论错误的是( )
A.曲线
的方程为
;
B.左焦点到一条渐近线距离为
;
C.直线
与曲线
有两个公共点;
D.过右焦点截双曲线所得弦长为
的直线只有三条;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边
作方形,会发现塔的高度正好跟此对角线长度相等.以塔底座的边作方形.作方圆图,会发现方圆的切点
正好位于塔身和塔顶的分界.经测量发现,木塔底层的边
不少于
米,塔顶
到点
的距离不超过
米,则该木塔的高度可能是(参考数据:
)( )
![]()
A.
米B.
米C.
米D.
米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的参数方程为
(
为参数).在以坐标原点
为极点,
轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线
的极坐标方程是
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)设点
.若直
与曲线
相交于两点
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com