精英家教网 > 高中数学 > 题目详情
16.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,则F(x,y)=log2(y+1)+log${\;}_{\frac{1}{2}}$(x+1)的最小值为-2.

分析 由约束条件作出可行域,结合 的几何意义求出可行域内的动点与定点(-2,0)连线的斜率的最值得答案.

解答 解:F(x,y)=log2(y+1)+log${\;}_{\frac{1}{2}}$(x+1)
可得F(x,y)=log2$\frac{y+1}{x+1}$,x>-1,y>-1,
由约束条件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$作出可行域如图,
$\frac{y+1}{x+1}$的几何意义为可行域内的动点与定点(-1,-1)连线的斜率,
kPA=$\frac{0+1}{3+1}$=$\frac{1}{4}$,kPB=$\frac{1+1}{0+1}$=2.∵得y=log2x是增函数,
∴F(x,y)=log2$\frac{y+1}{x+1}$,
则F(x,y)=log2(y+1)+log${\;}_{\frac{1}{2}}$(x+1)=log2$\frac{y+1}{x+1}$的最小值为:F(3,0)=log2$\frac{1}{4}$=-2.
故答案为:-2.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,注意对数的运算法则,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知sin(π+α)=$\frac{\sqrt{3}}{2}$,则cos(α-$\frac{π}{2}$)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)(-2-4i)-(7-5i)+(1+7i)
(2)(1+i)(2+i)+$\frac{5+i}{1-i}$+(1-i)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sinα的值;
(Ⅱ)求$\frac{sin(\frac{3π}{2}+α)+2cos(\frac{π}{2}+α)}{cos(3π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“p∧q为假命题”是“¬p为真命题”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1-x)7的展开式中的第5项为35x4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知曲线y=$\frac{|x|}{{e}^{x}}$(x∈R,e是自然对数的底数)在x=-1处的切线和它在x=x0(x0≠0)处的切线互相垂直,设x0∈($\frac{m}{4}$,$\frac{m+1}{4}$),m是整数,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数$\frac{i}{2+i}$(i是虚数单位)的模长是(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$-\frac{29π}{6}$是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

同步练习册答案