精英家教网 > 高中数学 > 题目详情
3.某校从2名男生和3名女生中随机选出3名学生做义工,则选出的学生中男女生都有的概率为$\frac{9}{10}$.

分析 先求出基本事件总数,由选出的学生中男女生都有的对立事件是选出的3名学生都是女生,由此利用对立事件概率计算公式能求出选出的学生中男女生都有的概率.

解答 解:某校从2名男生和3名女生中随机选出3名学生做义工,
基本事件总数n=${C}_{5}^{3}$=10,
选出的学生中男女生都有的对立事件是选出的3名学生都是女生,
∴选出的学生中男女生都有的概率为p=1-$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=1-$\frac{1}{10}$=$\frac{9}{10}$.
故答案为:$\frac{9}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.过原点O的直线与函数y=log8x的图象交于A,B两点,过A,B分别作x轴的垂线交函数y=1og2x的图象于C,D两点.求证:O,C,D三点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.利用平移变换和对称变换作出函数y=-sinx-2的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1)且△ABC的周长为3(1+$\sqrt{2}$+$\sqrt{3}$),解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且($\sqrt{3}$c-2b)cos(π-A)=$\sqrt{3}$acosC,
(1)求角A的值;
(2)若角B=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,b>0,且2a+3b=6,则$\frac{3}{a}$+$\frac{2}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l:y=kx+2k+1与抛物线C:y2=4x,若l与C有且仅有一个公共点,则实数k的取值集合为(  )
A.$\left\{{-1,\frac{1}{2}}\right\}$B.{-1,0}C.$\left\{{-1,0,\frac{1}{2}}\right\}$D.$\left\{{0,\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点(2,-1)且倾斜角为60°的直线方程为(  )
A.$\sqrt{3}x-y-2\sqrt{3}$-1=0B.$\sqrt{3}x-3y-2\sqrt{3}$-3=0C.$\sqrt{3}x-y+2\sqrt{3}$+1=0D.$\sqrt{3}x-3y+2\sqrt{3}+3=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从某班56人中随机抽取1人,则班长被抽到的概率是$\frac{1}{56}$.

查看答案和解析>>

同步练习册答案