分析 (1)利用正弦定理将边化角,使用和角公式化简即可得出cosA;
(2)使用余弦定理解出等腰三角形的腰长,代入面积公式计算.
解答
解:(1)在△ABC中,∵($\sqrt{3}$c-2b)cos(π-A)=$\sqrt{3}$acosC,
∴(2sinB-$\sqrt{3}$sinC)cosA=$\sqrt{3}$sinAcosC,
即2sinBcosA=$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB.
∴cosA=$\frac{\sqrt{3}}{2}$.∴A=$\frac{π}{6}$.
(2)∵A=B=$\frac{π}{6}$,∴AC=BC,C=$\frac{2π}{3}$.设CM=x,则AC=2x,
在△ACM中,由余弦定理得AM2=AC2+CM2-2AC•CMcosC,
即7=4x2+x2+2x2,解得x=1,∴AC=BC=2.
∴S△ABC=$\frac{1}{2}AC•BCsinC$=$\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
点评 本题考查了正余弦定理在解三角形中的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | 2 | C. | $\frac{2\sqrt{3}}{3}$或2 | D. | $\sqrt{3}$或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(6)<f(4)<f(1) | B. | f(4)<f(6)<f(1) | C. | f(1)<f(6)<f(4) | D. | f(6)<f(1)<f(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com