精英家教网 > 高中数学 > 题目详情
8.(1)已知tan(π+α)=-$\frac{1}{3}$,求$\frac{sinα+2cosα}{5cosα-sinα}$的值;
(Ⅱ)已知sinα-cosα=$\frac{1}{5}$,且0<α<π,求tanα的值.

分析 由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.

解答 解:(1)∵已知tan(π+α)=-$\frac{1}{3}$,∴$\frac{sinα+2cosα}{5cosα-sinα}$=$\frac{tanα+2}{5-tanα}$=$\frac{\frac{5}{3}}{\frac{16}{3}}$=$\frac{5}{16}$.
(Ⅱ)∵已知sinα-cosα=$\frac{1}{5}$,∴1-2sinαcosα=$\frac{1}{25}$,∴2sinαcosα=$\frac{24}{25}$,
∵0<α<π,∴sinα>0、cosα>0,∴sinα+cosα=$\sqrt{{(sinα+cosα)}^{2}}$=$\sqrt{1+\frac{24}{25}}$=$\frac{7}{5}$,
∴sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且($\sqrt{3}$c-2b)cos(π-A)=$\sqrt{3}$acosC,
(1)求角A的值;
(2)若角B=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的图象如图所示,则下列结论正确的是(  )
A.0<f′(a)<f′(a+1)<f(a+1)-f(a)B.0<f′(a+1)<f(a+1)-f(a)<f′(a)
C.0<f′(a+1)<f′(a)<f(a+1)-f(a)D.0<f(a+1)-f(a)<f′(a)<f′(a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|0<x<3},B=$\left\{{x|y=\sqrt{{x^2}-1}}\right\}$,则集合A∩(∁RB)为(  )
A.[0,1)B.(0,1)C.[1,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若角α的顶点为坐标原点,始边与x轴的非负半轴重合,且终边上一点的坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则tanα的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从某班56人中随机抽取1人,则班长被抽到的概率是$\frac{1}{56}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直四棱柱ABCD-A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.
(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在平行四边形ABCD中,E为BC的中点,且$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则(  )
A.x=-1,y=-$\frac{1}{2}$B.x=1,y=$\frac{1}{2}$C.x=-1,y=$\frac{1}{2}$D.x=1,y=-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若m>n,则(  )
A.0.2m<0.2nB.log0.3m>log0.3nC.2m<2nD.m2>n2

查看答案和解析>>

同步练习册答案