精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|0<x<3},B=$\left\{{x|y=\sqrt{{x^2}-1}}\right\}$,则集合A∩(∁RB)为(  )
A.[0,1)B.(0,1)C.[1,3)D.(1,3)

分析 求出B中x的范围确定出B,根据全集R求出B的补集,找出A与B补集的交集即可.

解答 解:由y=$\sqrt{{x}^{2}-1}$,得到x2-1≥0,
解得:x≥1或x≤-1,即B=(-∞,-1]∪[1,+∞),
∵全集为R,A=(0,3),
∴∁RB=(-1,1),
则A∩(∁RB)=(0,1).
故选:B.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数y=log2x+2x(x≥2)的值域是[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的奇函数f (x)满足f(x)=f(4-x),且在区间[0,2]上是增函数,那么(  )
A.f(6)<f(4)<f(1)B.f(4)<f(6)<f(1)C.f(1)<f(6)<f(4)D.f(6)<f(1)<f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.
(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,$f(x)=1+{log_{\frac{1}{3}}}x$,求$f(2\sqrt{3})$的值;
(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,$f(x)=\sqrt{3x-{x^2}}$,求证:函数$y=f(x)-\sqrt{2}x$在(1,+∞)上无零点;
(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N*)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C经过A(1,3),B(-1,1)两点,且圆心在直线y=x上.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线l经过点(2,-2),且l与圆C相交所得弦长为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.气象台预报“本市明天降雨概率是70%”,下列说法正确的是(  )
A.本市明天将有70%的地区降雨B.本市明天将有70%的时间降雨
C.明天出行带雨具的可能性很大D.明天出行不带雨具肯定要淋雨

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知tan(π+α)=-$\frac{1}{3}$,求$\frac{sinα+2cosα}{5cosα-sinα}$的值;
(Ⅱ)已知sinα-cosα=$\frac{1}{5}$,且0<α<π,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≥0}\\{x-2y+1≤0}\\{2x+y-8≤0}\end{array}\right.$,则u=$\frac{2x+3y}{x+y}$的取值范围为$\frac{12}{5}$≤u≤$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A、B、C、D在同一球面上,AB=3,BC=4,AC=5,若四面体ABCD体积的最大值为10,则这个球的表面积为(  )
A.$\frac{25π}{4}$B.$\frac{125π}{4}$C.$\frac{225π}{16}$D.$\frac{625π}{16}$

查看答案和解析>>

同步练习册答案