精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的奇函数f (x)满足f(x)=f(4-x),且在区间[0,2]上是增函数,那么(  )
A.f(6)<f(4)<f(1)B.f(4)<f(6)<f(1)C.f(1)<f(6)<f(4)D.f(6)<f(1)<f(4)

分析 根据函数奇偶性和单调性的关系将条件进行转化比较即可.

解答 解:∵f(x)=f(4-x),
∴函数f(x)关于x=2对称,
则∵奇函数f (x)在区间[0,2]上是增函数,
∴函数f(x)在区间[-2,2]上是增函数,
则函数f(x)在在区间[2,6]上是减函数,
则f(1)=f(3),
∵f(6)<f(4)<f(3),
∴f(6)<f(4)<f(1),
故选:A

点评 本题主要考查函数值的大小比较,根据函数奇偶性和对称性的性质将条件进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别为a,b,c.若cosB=$\frac{12}{13}$,sin2B=sinA•sinC,且S△ABC=$\frac{5}{2}$,则a+c=3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且($\sqrt{3}$c-2b)cos(π-A)=$\sqrt{3}$acosC,
(1)求角A的值;
(2)若角B=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l:y=kx+2k+1与抛物线C:y2=4x,若l与C有且仅有一个公共点,则实数k的取值集合为(  )
A.$\left\{{-1,\frac{1}{2}}\right\}$B.{-1,0}C.$\left\{{-1,0,\frac{1}{2}}\right\}$D.$\left\{{0,\frac{1}{2}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知奇函数f(x)的定义域为[-2,2],且在定义域上单调递减,则满足不等式f(1-m)+f(1-2m)<0的实数m的取值范围是[-$\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点(2,-1)且倾斜角为60°的直线方程为(  )
A.$\sqrt{3}x-y-2\sqrt{3}$-1=0B.$\sqrt{3}x-3y-2\sqrt{3}$-3=0C.$\sqrt{3}x-y+2\sqrt{3}$+1=0D.$\sqrt{3}x-3y+2\sqrt{3}+3=0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的图象如图所示,则下列结论正确的是(  )
A.0<f′(a)<f′(a+1)<f(a+1)-f(a)B.0<f′(a+1)<f(a+1)-f(a)<f′(a)
C.0<f′(a+1)<f′(a)<f(a+1)-f(a)D.0<f(a+1)-f(a)<f′(a)<f′(a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|0<x<3},B=$\left\{{x|y=\sqrt{{x^2}-1}}\right\}$,则集合A∩(∁RB)为(  )
A.[0,1)B.(0,1)C.[1,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在平行四边形ABCD中,E为BC的中点,且$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则(  )
A.x=-1,y=-$\frac{1}{2}$B.x=1,y=$\frac{1}{2}$C.x=-1,y=$\frac{1}{2}$D.x=1,y=-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案