精英家教网 > 高中数学 > 题目详情
11.已知圆C经过A(1,3),B(-1,1)两点,且圆心在直线y=x上.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线l经过点(2,-2),且l与圆C相交所得弦长为$2\sqrt{3}$,求直线l的方程.

分析 (Ⅰ)设圆C的圆心坐标为(a,a),利用CA=CB,建立方程,求出a,即可求圆C的方程;
(Ⅱ)分类讨论,利用圆心到直线的距离公式,求出斜率,即可得出直线方程.

解答 解:(Ⅰ)设圆C的圆心坐标为(a,a),
依题意,有$\sqrt{{{(a-1)}^2}+{{(a-3)}^2}}=\sqrt{{{(a+1)}^2}+{{(a-1)}^2}}$,
即a2-6a+9=a2+2a+1,解得a=1,(2分)
所以r2=(1-1)2+(3-1)2=4,(4分)
所以圆C的方程为(x-1)2+(y-1)2=4.(5分)
(Ⅱ)依题意,圆C的圆心到直线l的距离为1,
所以直线x=2符合题意.(6分)
设直线l方程为y+2=k(x-2),即kx-y-2k-2=0,
则$\frac{|k+3|}{{\sqrt{{k^2}+1}}}=1$,解得$k=-\frac{4}{3}$,
所以直线l的方程为$y+2=-\frac{4}{3}(x-2)$,即4x+3y-2=0.(9分)
综上,直线l的方程为x-2=0或4x+3y-2=0.(10分)

点评 本题考查圆的标准方程,考查直线与圆的位置关系,考查学生的计算能力,正确运用点到直线的距离公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知一次函数y=f(x)在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知奇函数f(x)的定义域为[-2,2],且在定义域上单调递减,则满足不等式f(1-m)+f(1-2m)<0的实数m的取值范围是[-$\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的图象如图所示,则下列结论正确的是(  )
A.0<f′(a)<f′(a+1)<f(a+1)-f(a)B.0<f′(a+1)<f(a+1)-f(a)<f′(a)
C.0<f′(a+1)<f′(a)<f(a+1)-f(a)D.0<f(a+1)-f(a)<f′(a)<f′(a+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)计算:($\frac{4}{3}$)-1+($\frac{1}{8}$)${\;}^{\frac{2}{3}}$+lg3-lg0.3
(Ⅱ)已知tanα=2,求$\frac{sinα-sin(\frac{π}{2}-α)}{sin(π-α)+2cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|0<x<3},B=$\left\{{x|y=\sqrt{{x^2}-1}}\right\}$,则集合A∩(∁RB)为(  )
A.[0,1)B.(0,1)C.[1,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若角α的顶点为坐标原点,始边与x轴的非负半轴重合,且终边上一点的坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则tanα的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直四棱柱ABCD-A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.
(1)证明:平面MNE⊥平面D1DE;
(2)证明:MN∥平面D1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆C的方程为x2+y2=4,点M(t,3),若圆C上存在两点A,B满足$\overrightarrow{MA}=\overrightarrow{AB}$,则t的取值范围是$[{-3\sqrt{3},3\sqrt{3}}]$.

查看答案和解析>>

同步练习册答案