精英家教网 > 高中数学 > 题目详情
4.已知cosα=$\frac{1}{2}$,且α是第四象限的角,求sinα和tanα.

分析 由条件利用同角三角函数的基本关系,求得sinα和tanα的值.

解答 解:∵cosα=$\frac{1}{2}$,且α是第4象限角,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{\sqrt{3}}{2}$,
∴tanα=$\frac{sinα}{cosα}$=-$\sqrt{3}$.

点评 本题主要考查同角三角函数的基本关系、三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.一扇形的圆心角为2弧度,记此扇形的周长为c,面积为S,则$\frac{c-1}{S}$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式x+$\sqrt{xy}$≤a(x+2y)对任意的正实数x,y都成立,则实数a的最小值是(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{6}+2}{4}$C.$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{2}+2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别为a,b,c.若cosB=$\frac{12}{13}$,sin2B=sinA•sinC,且S△ABC=$\frac{5}{2}$,则a+c=3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.质点运动方程为s=$\sqrt{3}$t3+2t2+t,那么质点运动的加速度为6$\sqrt{3}$t+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.利用平移变换和对称变换作出函数y=-sinx-2的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知一次函数y=f(x)在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,且($\sqrt{3}$c-2b)cos(π-A)=$\sqrt{3}$acosC,
(1)求角A的值;
(2)若角B=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的图象如图所示,则下列结论正确的是(  )
A.0<f′(a)<f′(a+1)<f(a+1)-f(a)B.0<f′(a+1)<f(a+1)-f(a)<f′(a)
C.0<f′(a+1)<f′(a)<f(a+1)-f(a)D.0<f(a+1)-f(a)<f′(a)<f′(a+1)

查看答案和解析>>

同步练习册答案