10£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬a2=3£¬an£¾0£¬ÇÒÂú×ãan+12-an=an+1+an2£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè${b_n}={2^n}•{a_n}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©Éè${C_n}={4^n}-¦Ë•{2^{a_n}}$£¨¦ËΪÕýżÊý£¬n¡ÊN*£©£¬ÊÇ·ñ´æÔÚÈ·¶¨¦ËµÄÖµ£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬ÓÐCn+1£¾Cnºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©½«Ìõ¼þ»¯¼ò¿ÉµÃan+1-an=1£¬ÔÙÓɵȲîÊýÁе͍ÒåºÍͨÏʽ£¬¼´¿ÉµÃµ½ËùÇó£»
£¨2£©ÇóµÃ${b_n}={2^n}•£¨n+1£©$£¬ÔÙÒéÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóºÍ£»
£¨3£©ÇóµÃan=n+1£¬${C_n}={4^n}-¦Ë•{2^{n+1}}$£¬ÒªÊ¹Cn+1£¾Cnºã³ÉÁ¢£¬ÔËÓÃ×÷²î·¨£¬ÔÙÓɲÎÊý·ÖÀ룬ÇóµÃÓұߵÄ×îСֵ¼´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£¬$£¨{a_{n+1}}+{a_n}£©•£¨{a_{n+1}}-{a_n}£©=£¨{a_{n+1}}+{a_n}£©£¨n¡Ê{N^*}£©$£¬ÇÒan£¾0£¬
¡àan+1-an=1£¨n¡ÊN*£©£¬ÇÒa2-a1=1£®
¡àÊýÁÐ{an}ÊÇÒÔa1=2ΪÊ×Ï¹«²îΪ1µÄµÈ²îÊýÁУ¬
¡àan=n+1£»                         
£¨2£©ÓÉ£¨1£©Öª${b_n}={2^n}•£¨n+1£©$£¬
ÉèËüµÄǰnÏîºÍΪTn
¡àTn=2•21+3•22+¡­+£¨n+1£©•2n£¬
2Tn=2•22+3•23+¡­+£¨n+1£©•2n+1£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º$-{T_n}=2¡Á{2^1}+{2^2}+{2^3}+¡­+{2^{n-1}}+{2^n}-£¨n+1£©¡Á{2^{n+1}}=-n•{2^{n+1}}$
ËùÒÔ${T_n}=n•{2^{n+1}}$£»
£¨3£©¡ßan=n+1£¬¡à${C_n}={4^n}-¦Ë•{2^{n+1}}$£¬
ҪʹCn+1£¾Cnºã³ÉÁ¢£¬
Ôò${C_{n+1}}-{C_n}={4^{n+1}}-{4^n}-¦Ë•{2^{n+2}}+¦Ë•{2^{n+1}}£¾0$ºã³ÉÁ¢£¬
¡à3•4n-¦Ë•2n+1£¾0ºã³ÉÁ¢£¬
¡à¦Ë£¼3•2n-1ºã³ÉÁ¢£®                              
µ±ÇÒ½öµ±n=1ʱ£¬3•2n-1ÓÐ×îСֵΪ3£¬¡à¦Ë£¼3£®ÓÖ¦ËΪÕýżÊý£¬Ôò¦Ë=2£®
¼´´æÔÚ¦Ë=2£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐCn+1£¾Cn£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬×¢ÒâÔËÓõȲîÊýÁе͍ÒåºÍͨÏʽ£¬¿¼²éÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬Í¬Ê±¿¼²éºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓÃÊýÁеĵ¥µ÷ÐÔ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô²»µÈʽx+$\sqrt{xy}$¡Üa£¨x+2y£©¶ÔÈÎÒâµÄÕýʵÊýx£¬y¶¼³ÉÁ¢£¬ÔòʵÊýaµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{\sqrt{6}+2}{4}$C£®$\frac{\sqrt{6}+\sqrt{2}}{4}$D£®$\frac{\sqrt{2}+2}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÒ»´Îº¯Êýy=f£¨x£©ÔÚÇø¼ä[-2£¬6]ÉÏµÄÆ½¾ù±ä»¯ÂÊΪ2£¬ÇÒº¯ÊýͼÏó¹ýµã£¨0£¬2£©£¬ÊÔÇó´ËÒ»´Îº¯ÊýµÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ£¨$\sqrt{3}$c-2b£©cos£¨¦Ð-A£©=$\sqrt{3}$acosC£¬
£¨1£©Çó½ÇAµÄÖµ£»
£¨2£©Èô½ÇB=$\frac{¦Ð}{6}$£¬BC±ßÉϵÄÖÐÏßAMµÄ³¤Îª$\sqrt{7}$£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôÖ±Ïßx-y-m=0±»Ô²x2+y2-8x+12=0Ëù½ØµÃµÄÏÒ³¤Îª$2\sqrt{2}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®2»ò6B£®0»ò8C£®2»ò0D£®6»ò8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÖ±Ïßl£ºy=kx+2k+1ÓëÅ×ÎïÏßC£ºy2=4x£¬ÈôlÓëCÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µã£¬ÔòʵÊýkµÄȡֵ¼¯ºÏΪ£¨¡¡¡¡£©
A£®$\left\{{-1£¬\frac{1}{2}}\right\}$B£®{-1£¬0}C£®$\left\{{-1£¬0£¬\frac{1}{2}}\right\}$D£®$\left\{{0£¬\frac{1}{2}}\right\}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÆæº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-2£¬2]£¬ÇÒÔÚ¶¨ÒåÓòÉϵ¥µ÷µÝ¼õ£¬ÔòÂú×ã²»µÈʽf£¨1-m£©+f£¨1-2m£©£¼0µÄʵÊýmµÄȡֵ·¶Î§ÊÇ[-$\frac{1}{2}$£¬$\frac{2}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©µÄͼÏóÈçͼËùʾ£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0£¼f¡ä£¨a£©£¼f¡ä£¨a+1£©£¼f£¨a+1£©-f£¨a£©B£®0£¼f¡ä£¨a+1£©£¼f£¨a+1£©-f£¨a£©£¼f¡ä£¨a£©
C£®0£¼f¡ä£¨a+1£©£¼f¡ä£¨a£©£¼f£¨a+1£©-f£¨a£©D£®0£¼f£¨a+1£©-f£¨a£©£¼f¡ä£¨a£©£¼f¡ä£¨a+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Ö±ËÄÀâÖùABCD-A1B1C1D1µÄµ×ÃæÊǵÈÑüÌÝÐΣ¬AB=CD=AD=1£¬BC=2£¬E£¬M£¬N·Ö±ðÊÇËùÔÚÀâµÄÖе㣮
£¨1£©Ö¤Ã÷£ºÆ½ÃæMNE¡ÍÆ½ÃæD1DE£»
£¨2£©Ö¤Ã÷£ºMN¡ÎÆ½ÃæD1DE£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸