精英家教网 > 高中数学 > 题目详情
7.已知x∈(0,π),且cos(2x-$\frac{π}{2}$)=sin2x,则tan(x-$\frac{π}{4}$)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

分析 由已知利用诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式可求tanx的值,进而利用两角差的正切函数公式即可计算得解.

解答 解:∵cos(2x-$\frac{π}{2}$)=sin2x,可得:sin2x=sin2x,
∴2sinxcosx=sin2x,
∵x∈(0,π),sinx>0,
∴2cosx=sinx,可得tanx=2,
∴tan(x-$\frac{π}{4}$)=$\frac{tanx-tan\frac{π}{4}}{1+tanxtan\frac{π}{4}}$=$\frac{2-1}{1+2×1}$=$\frac{1}{3}$.
故选:A.

点评 本题主要考查了诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式,两角差的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={1,2,3,4},B={2,3,4,5},则A∪B等于(  )
A.{2,4}B.{1,5}C.{2,3,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前6项的和S6=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为k1、k2
(1)若AB⊥CD,且k1=1,求△FMN的面积;
(2)若$\frac{1}{k_1}+\frac{1}{k_2}=1$,求证:直线MN过定点,并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{(i-1)^{2}+4}{i+1}$的虚部为(  )
A.-1B.-3C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在四棱锥P-ABCD中,PA⊥底面ABCD,其中PA=2AB=2AD=2,G为三角形BCD的重心,则PG与底面ABCD所成角的正弦值为(  )
A.$3\sqrt{2}$B.$\frac{3\sqrt{11}}{11}$C.$\frac{{\sqrt{19}}}{19}$D.$\frac{{3\sqrt{19}}}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C的对边,$b=1,c=\sqrt{3},B={30°}$,则a=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y-2≤0}\\{x+y-2≤0}\end{array}\right.$,若z=x-ay(a>0)的最大值为4,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设A(-1,0),B是圆F:(x-1)2+y2=16上的动点,AB垂直平分线交BF于P,则动点P的轨迹方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步练习册答案