精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥,底面为菱形, 平面 分别是的中点.

(Ⅰ)证明:

(Ⅱ)若上的动点, 与平面所成最大角的正切值为,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(Ⅰ)由条件,可证菱形中, ,再由线面垂直可得线线垂直得出,进一步得出平面,再由线面垂直的性质,可证线线垂直 (Ⅱ)由所给条件,建立以为坐标原点空间直角坐标系,写出空间各点坐标,求出二面角的二面的法向量,由法向量的夹角与二面角之间的关系求出其余弦值.

试题解析:(Ⅰ)证明:由四边形为菱形, ,可得为正三角形.

因为的中点,所以

,因此

因为平面 平面,所以

平面 平面

所以平面.又平面,所以

(Ⅱ)解:设 上任意一点,连接

由(Ⅰ)知平面 与平面所成的角.

中, ,所以当最短时, 最大,

即当时, 最大.此时

因此.又,所以,所以

方法1:因为平面 平面

所以平面平面.过,由面面垂直的性质定理,

平面,过,连,则,此时平面

显然,则为二面角的平面角,

中,∵,∴

中,∵,又的中点,∴

因此在中, ,又

中, ,即所求二面角的余弦值为

方法2:由(Ⅰ)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,

分别为的中点,所以 ,所以

设平面的一法向量为,则 因此

,则,因为 ,所以平面

为平面的一法向量.又,所以.因为二面角为锐角,所以所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱平面线段一点.

)求值,使得

)在()的条件下,求二面角正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量单位:千套与销售价格单位:元/套满足的关系式为常数,其中成反比,的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.

1 的表达式;

2 假设网校的员工工资,办公等所有开销折合为每套题3只考虑销售出的套数,试确定销售价格的值,使网校每日销售套题所获得的利润最大保留1位小数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD所在平面外一点,MN分别为ABPC的中点,平面PAD∩平面PBC=l.

(1)判断BC与l的位置关系,并证明你的结论;

(2)判断MN与平面PAD的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.

(1)若直线和圆总有两个不同的公共点,求k的取值集合

(2)求当k取何值时,直线被圆截得的弦最短,并求这最短弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W

求W的方程;

若A、B是W上的不同两点,O是坐标原点,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点E为正方形ABCD边CD上异于点C,D的动点,将ADE沿AE翻折成SAE,使得平面SAE平面ABCE,则下列说法中正确的有(

①存在点E使得直线SA平面SBC;

②平面SBC内存在直线与SA平行

③平面ABCE内存在直线与平面SAE平行;

④存在点E使得SEBA.

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.

)试将该企业每天生产这种产品所获得的利润表示为的函数;

)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?

查看答案和解析>>

同步练习册答案