精英家教网 > 高中数学 > 题目详情
11.如图所示,折线B0A1B2A2B3A3…中线段分别平行于x轴或y轴,A1,A2,…,An…这些点在函数y=$\frac{2}{x-1}$(x>1)图象上,B1,B2…Bn…这些点在直线y=x上,设点An的纵坐标为yn
(1)用yn表示yn+1(n∈N*);
(2)若B0($\frac{11}{5}$,0),请写出数列{yn}的所有项;
(3)设B0(x0,0),当x0为何值时,数列{yn}是一个无穷的常数列.

分析 (1)设B0(x0,0),由题意可得B1(x0,x0),B2($\frac{2}{{x}_{0}-1}$,$\frac{2}{{x}_{0}-1}$),B3($\frac{2}{\frac{2}{{x}_{0}-1}-1}$,$\frac{2}{\frac{2}{{x}_{0}-1}-1}$),即可得到所求关系式;
(2)由(1),运用列举法,即可得到所求数列中的所有项;
(3)由(1)可得,令yn+1=yn=t,(t>1),解方程即可得到所求值.

解答 解:(1)设B0(x0,0),由题意可得B1(x0,x0),
A1(x0,$\frac{2}{{x}_{0}-1}$),B2($\frac{2}{{x}_{0}-1}$,$\frac{2}{{x}_{0}-1}$),
A2($\frac{2}{{x}_{0}-1}$,$\frac{2}{\frac{2}{{x}_{0}-1}-1}$),
B3($\frac{2}{\frac{2}{{x}_{0}-1}-1}$,$\frac{2}{\frac{2}{{x}_{0}-1}-1}$),

即有yn+1=f(yn)=$\frac{2}{{y}_{n}-1}$(yn>1);
(2)由B0($\frac{11}{5}$,0),
可得数列{yn}的所有项为:$\frac{11}{5}$,$\frac{5}{3}$,3,1;
(3)设B0(x0,0),由(1)可得,
令yn+1=yn=t,(t>1),
即有t=$\frac{2}{t-1}$,即为t2-t-2=0,
解得t=2(-1舍去).
则x0为2时,数列{yn}是一个无穷的常数列.

点评 本题数列的递推式的求法,注意运用分析法,考查数列的项的求法,注意运用列举法,同时考查常数列的求法,注意运用方程的思想,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=sinx-\sqrt{3}cosx,\;x∈[0,\frac{π}{2}]$的值域是[-$\sqrt{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax+1,
(Ⅰ)设g(x)=(2x-3)f(x),若y=g(x)与x轴恰有两个不同的交点,试求a的取值集合;
(Ⅱ)求函数y=|f(x)|在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{(x-a)(x-3a),x≥1}\end{array}\right.$,若函数f(x)恰好有两个零点,则实数a的取值范围是$\frac{1}{3}$≤a<1或a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(Ⅰ)若AA1=AC,求证:AC1⊥平面A1B1CD;
(Ⅱ)若CD=2,AA1=λAC,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$,求三棱锥C1-A1CD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若方程x2-1995x-1996=0和x2+1995x-1996=0的较小根分别为a和b,则ab的值为(  )
A.1B.-1C.1996D.-1996

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆M:$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)上一点与椭圆的两个焦点构成的三角形周长为4+2$\sqrt{3}$.
(1)求椭圆M的方程;
(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,其离心率为$\frac{1}{2}$,点P是椭圆C上一点,若△PF1F2的面积为1且其内切圆的半径为$\frac{1}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点Q为椭圆C上异于长轴端点A1,A2的动点,定直线y=4与直线QA1、QA2分别相交于M、N两点,已知点G(0,7),试判断y轴上是否存在不同于点G的定点H,使得M,N,G,H四点共圆?若存在,求出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$sin2x-$\sqrt{3}$cos2x,求f(x)的最小正周期和最小值.

查看答案和解析>>

同步练习册答案