精英家教网 > 高中数学 > 题目详情

(本小题满分7分)
已知函数
(Ⅰ)当时,求函数的定义域;
(Ⅱ)当函数的定义域为R时,求实数的取值范围。

(1).(2)

解析试题分析:解:(Ⅰ)当时,要使函数有意义,
有不等式成立,------------------① 
时,不等式①等价于,即,∴
时,不等式①等价于,∴无解
时,不等式①等价于,即,∴
综上函数的定义域为.      
(Ⅱ)∵函数的定义域为, ∴不等式恒成立,
∴只要即可,又
(当且仅当时取等)
,∴. ∴的取值范围是
考点:绝对值不等式的求解
点评:解决该试题的关键是利用绝对值的含义以及公式来分情况讨论求解得到,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知x=的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)求函数的单调区间和值域。
(2)设,求函数,若对于任意,总存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(8分)已知函数x∈R).
(1)若,求的值;
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数,其中
求函数的最大值和最小值;
若实数满足:恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知方程x2+y2-2(m+3)x+2(1-4m2) y+16m4+9=0表示一个圆,(1)求实数m取值范围;(2)求圆半径r取值范围;(3)求圆心轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;(4分)
(2)若关于的方程有两解,求实数的取值范围;(6分)
(3)若,记,试求函数在区间上的最大值.(10分)

查看答案和解析>>

同步练习册答案