精英家教网 > 高中数学 > 题目详情
20.计算:log2$\frac{\sqrt{2}}{2}$=$-\frac{1}{2}$.

分析 利用对数的原式性质即可得出.

解答 解:原式=$lo{g}_{2}{2}^{-\frac{1}{2}}$=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$.

点评 本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的奇函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=sin(x+$\frac{π}{6}$)的图象向左平移$\frac{π}{4}$个单位,所得函数g(x)图象的一个对称中心可以是(  )
A.($\frac{π}{12}$,0)B.(-$\frac{π}{12}$,0)C.($\frac{7π}{12}$,0)D.(-$\frac{π}{4}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.2016年国庆期间,某大型商场举行购物送劵活动,一名顾客计划到该商场购物,他有三张商场优惠劵,商场规定每购买一件商品只能使用一张优惠劵,根据购买商品的标价,三张优惠劵的优惠方式不同,具体如下:
优惠劵A:若商品标价超过100元,则付款时减免标价的10%;
优惠劵B:若商品标价超过200元,则付款时减免30元;
优惠劵C:若商品标价超过200元,则付款时减免超过200元部分的20%.
若顾客想使用优惠劵C,并希望比使用优惠劵A或优惠劵B减免的钱都多,则他购买的商品的标价应高于(  )
A.300元B.400元C.500元D.600元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用min{a,b}表示a,b两数中的最小值,若f(x)=min{|x|,|x+t|}的图象关于直线x=-$\frac{3}{2}$对称,则t的值为(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,对?x∈(-∞,-1)上恒成立.
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,复数z满足$\frac{z}{z-i}$=i,则z=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$-\frac{1}{2}+\frac{1}{2}i$D.$-\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足$\left\{\begin{array}{l}{x≤y}\\{y≤10-2x}\\{x≥1}\end{array}\right.$,$\overrightarrow{a}$=(2x-y,m),$\overrightarrow{b}$=(-1,1)}${x≥1}\end{array}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}ln({1-x}),x<0\\{({x-1})^3}+1,x≥0\end{array}$,若f(x)≥ax恒成立,则实数a的取值范围是(  )
A.$[{0,\frac{2}{3}}]$B.$[{0,\frac{3}{4}}]$C.[0,1]D.$[{0,\frac{3}{2}}]$

查看答案和解析>>

同步练习册答案