精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)在同一周期内有最高点( )和最低点( ).
(1)求f(x)的解析式及f(x)= 的解集;
(2)将f(x)的图象向右平移 个单位,再将横坐标扩大为原来的2倍(纵坐标不变)后得到g(x)的函数图象,写出g(x)的解析式.
解:(1)由题意知:A=2,  T= = ﹣ ,解得ω=2.
再由五点法作图可得 2×+φ= ,解得 φ= .
故得所求函数的解析式为f(x)=2sin(2x+ ).
由f(x)= 可得 sin(2x+ )= 
∴2x+ =2kπ+ ,或  2x+ =2kπ+ ,k∈z.解得 x=k π﹣ ,或 x=kπ+ 
故f(x)= 的解集为 {x|x=k π﹣ ,或 x=kπ+  },k∈z.
(2)把f(x)=2sin(2x+ )的图象向右平移 个单位
得到y=2sin[2(x﹣ )+ ]=2sin2x 的图象.
再将横坐标扩大为原来的2倍(纵坐标不变)后得到 y=2sinx 的图象,
∴g(x)=2sinx.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案