精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|-2≤x≤2,x∈R},B={x|x≥a},且A⊆B,则实数a的取值范围(  )
A.a<-2B.a>2C.a≤-2D.a≥2

分析 根据集合间的包含关系运算,列出不等式,即可求出实数a的取值范围.

解答 解:∵集合A={x丨-2≤x≤2,x∈R},B={x丨x≥a},且A⊆B,
∴a≤-2
故选:C.

点评 本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间包含的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使其分别满足如下条件:
(1)l1∥l2
(2)l1⊥l2且l1在y轴上的截距为-1;
(3)l1与l2相交于点P(m,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2ax+1-3(a>0且a≠1)的图象经过的定点坐标是(  )
A.(0,1)B.(-1,1)C.(-1,-1)D.(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且该函数的图象与y轴交于点(0,3),在x轴上截得的线段长为2,则该二次函数的解析式为f(x)=x2-4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\frac{1}{\sqrt{6-x}}$+lg(x-5)0的定义域是{x|x<5或5<x<6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x2+4x+y2-6y+13=0,求$\frac{x-2y}{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={(x,y)|x-y=0},B={(x,y)|x+y=0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:y=3x和点P(8,3),点Q为第一象限内的点,且在直线l上,直线PQ交x轴正半轴于点M,求△OMQ的面积S的最小值.(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知矩阵$A=[{\begin{array}{l}a&b\\ c&d\end{array}}]$,若矩阵A属于特征值6的一个特征向量为$\overrightarrow{{α}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,属于特征值1的一个特征向量为$\overrightarrow{{α}_{2}}$=$[\begin{array}{l}{3}\\{-2}\end{array}]$.求A的逆矩阵.

查看答案和解析>>

同步练习册答案