【题目】已知抛物线,其焦点为.
(1)若点,求以为中点的抛物线的弦所在的直线方程;
(2)若互相垂直的直线都经过抛物线的焦点,且与抛物线相交于两点和两点,求四边形面积的最小值.
科目:高中数学 来源: 题型:
【题目】某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法分别为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业接到生产3000台某产品的三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产部件6件,或部件3件,或部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产部件的人数与生产部件的人数成正比,比例系数为(为正整数).
(1)设生产部件的人数为,分别写出完成三件部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的,2倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知函数(,)的图像关于直线x=对称,最大值为3,且图像上相邻两个最高点的距离为.
(1)求的最小正周期;
(2)求函数的解析式;
(3)若,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
在平面直角坐标系xOy中,已知曲线,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项为和Sn,点(n,)在直线y=x+上.数列{bn}满足bn+2-2bn+1+bn=0(nN*),且b3=11,前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前项和
(3)设nN*,f(n)=问是否存在mN*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com