精英家教网 > 高中数学 > 题目详情
2.在△ABC中,AB=log48,S△ABC=3$\sqrt{3}$,∠A=60°,则BC=$\frac{\sqrt{253}}{2}$.

分析 利用三角形面积计算公式、余弦定理即可得出.

解答 解:AB=log48=$\frac{lo{g}_{2}8}{lo{g}_{2}4}$=$\frac{3}{2}$,S△ABC=3$\sqrt{3}$,∠A=60°,
∴$3\sqrt{3}=\frac{1}{2}b×\frac{3}{2}sin6{0}^{°}$,
解得b=8.
由余弦定理:a2=b2+c2-2bccosA=${8}^{2}+(\frac{3}{2})^{2}-2×8×\frac{3}{2}×\frac{1}{2}$=$\frac{\sqrt{253}}{2}$,
故答案为:$\frac{\sqrt{253}}{2}$.

点评 本题考查了三角形面积计算公式、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.当x>0时,f(x)=$\frac{1}{3}$x3-4x的单调减区间是(  )
A.(2,+∞)B.(0,2)C.($\sqrt{2}$,+∞)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点M(2,4)作直线l,与抛物线y2=8x只有一个公共点,满足条件的直线有(  )条.
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=2px(p>0)上一点A(3,m)(m>0),若A到焦点F的距离为4,则以A为圆心与抛物线C的准线相切的圆的标准方程为(x-3)2+(y-2$\sqrt{3}$)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一块形状为等腰直角三角形的薄板,腰AC的长为a米(a为常数),现在斜边AB选一点D,将△ACD沿CD折起.翻扣在地面上,做成一个遮阳棚,如图(2),设△BCD的面积为S,点A到直线CD的距离为d,实践证明,遮阳效果y与S,d的乘积Sd成正比,比例系数为k,(k为常数,且k>0)
(1)设∠ACD=θ,试将S表示为θ的函数
(2)当点D在何处时,遮阳效果最佳(即y取得最大值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为$\frac{1}{7}$,每个球被取到的机会均等.现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为x.
(1)求袋子中白球的个数;
(2)求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有同学说,定积分${∫}_{a}^{b}$f(x)dx的值也可以这样计算:
(1)分割:在[a,b]上插入n-1个点,a=x0<x1<x2<…<xi-1<xi<…<xn=b,将[a,b]割成n个小区间:[x0,x1],[x1,x2],…[xi-1,xi],…[xn-1,xn],记第i个区间的长度为△xi,△xi=xi-xi-1(i=)1,2,…,n),记n个区间长度中最长的为T,即T=max{△x1,△x2,…,△xn};
(2)近似代、求和.设ξ∈[xi-1,xi],则${∫}_{a}^{b}$f(x)dx≈$\sum_{i=1}^{n}$f(ξ)△xi
(3)取极限:当T无限减小趋向于零时,则$\sum_{i=1}^{n}$f(ξ)△xi无限趋向于${∫}_{a}^{b}$f(x)dx,即${∫}_{a}^{b}$f(x)dx=$\underset{lim}{x→∞=1}$$\sum_{i=1}^{n}$f(ξ)△xi
这样就算正确吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题p:?x∈R,ex-mx=0,命题q:f(x)=$\frac{1}{3}$x3-mx2-2x在[-1,1]递减,若p∨(-q)为假命题,则实数m的取值范围为(  )
A.[-3,e)B.[-3,0]C.[0,$\frac{1}{2}$]D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知z∈C,满足不等式z$\overline{z}$+iz-i$\overline{z}$≤0的点Z的集合用阴影表示为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案