精英家教网 > 高中数学 > 题目详情
7.袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为$\frac{1}{7}$,每个球被取到的机会均等.现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为x.
(1)求袋子中白球的个数;
(2)求x的分布列和数学期望.

分析 (1)设袋子中有n,(n∈N)个白球,$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}=\frac{1}{7}$,求解n即可.
(2)由(1)得,袋子中有4个红球,3个白球,X的可能取值为0,1,2,3,求出概率得到分布列,然后求解期望即可.

解答 (本小题满分12分)
(1)解:设袋子中有n,(n∈N)个白球,依题意得,$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}=\frac{1}{7}$,…(1分)
即$\frac{\frac{n(n-1)}{2}}{\frac{7×6}{2}}=\frac{1}{7}$,化简得,n2-n-6=0,…(2分)
解得,n=3或n=-2(舍去).…(3分)
∴袋子中有3个白球.…(4分)
(2)解:由(1)得,袋子中有4个红球,3个白球.…(5分)
X的可能取值为0,1,2,3,…(6分)
P(X=0)=$\frac{4}{7}$,P(X=1)=$\frac{3}{7}×\frac{4}{6}=\frac{2}{7}$,
P(X=2)=$\frac{3}{7}×\frac{2}{6}×\frac{4}{5}=\frac{4}{35}$,
P(X=3)=$\frac{3}{7}×\frac{2}{6}×\frac{1}{5}×\frac{4}{4}=\frac{1}{35}$.…(10分)
∴X的分布列为:

X0123
P$\frac{4}{7}$$\frac{2}{7}$$\frac{4}{35}$$\frac{1}{35}$
…(11分)
∴EX=$0×\frac{4}{7}+1×\frac{2}{7}+2×\frac{4}{35}+3×\frac{1}{35}$=$\frac{3}{5}$.…(12分)

点评 本小题主要考查古典概型、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.抛物线y=ax2的焦点坐标为(0,$\frac{1}{4a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设集合M={x|f(x)=x},N={f(f(x))=x}.
(1)求证:M⊆N;
(2)若f(x)是一个在R上单调递增的函数,是否有M=N?若是,请证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正方形ABCD的外接圆的圆心O为坐标原点,直线AB的方程为x+2y-5=0.
(Ⅰ)求直线AD的方程及圆O的方程;
(Ⅱ)是否存在两个点M和N,使得圆O上任意一点P到点M的距离与到点N的距离之比为$\frac{1}{2}$?如果存在,写出两点的坐标,并证明你的结论;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,AB=log48,S△ABC=3$\sqrt{3}$,∠A=60°,则BC=$\frac{\sqrt{253}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-$\frac{1}{3}$x3+x2+3x-4,则当f(sinα)+f′(cosβ)(α、β∈[0,2π))取得最大值时,α+β=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x2-2lnx.
(1)求f(x)的单调区间;
(2)令g(x)=f(x)-x2+$\frac{a}{x}$(1≤x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤2恒成立,求实数a的取值范围;
(3)求证:对于任意正整数n,有12+22+32+…+n2-ln(12•22•33•…•n2)>ln($\frac{e}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为(  )
A.$\frac{7}{5}$B.$\frac{4}{3}$C.2D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.sin1-cos1>0(填“>”或“<”).

查看答案和解析>>

同步练习册答案