精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sinxcosx-$\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求f(x)的最大值和最小值.

分析 (Ⅰ)由二倍角公式和辅助角公式化简解析式,由此得到最小正周期.
(Ⅱ)由x的范围得到2x-$\frac{π}{3}$的范围,由此得到f(x)的值域.

解答 解:(Ⅰ)∵f(x)=sinxcosx-$\sqrt{3}{cos^2}$x,
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$,
=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
∴f(x)的最小正周期为T=π.
(Ⅱ)∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$∈[-$\sqrt{3}$,1-$\frac{\sqrt{3}}{2}$]
∴f(x)的最大值和最小值分别为1-$\frac{\sqrt{3}}{2}$和-$\sqrt{3}$.

点评 本题考查解析式的化简和由x的范围得到f(x)的值域问题,需熟练掌握公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,已知命题p:?k∈[4,6],输出S的值为30;命题q:?k∈(4,5),输出S的值为14,则下列命题正确的是(  )
A.qB.p∧qC.(¬p)∨qD.p(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}是公差为3的等差数列,且a1,a2,a5成等比数列,则a10=$\frac{57}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3sin$\frac{x}{2}cos\frac{x}{2}+4co{s}^{2}\frac{x}{2}$(x∈R)的最大值等于(  )
A.5B.$\frac{9}{2}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin$\frac{2x}{3}•cos(\frac{2π}{3}+\frac{π}{2})+2$的图象的相邻两条对称轴之间的距离是(  )
A.$\frac{3π}{8}$B.$\frac{3π}{4}$C.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=2$\sqrt{3}$sinxcosx-sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$,则下列结论错误的是(  )
A.f(x)在区间(0,$\frac{π}{6}$)上单调递增
B.f(x)的一个对称中心为(-$\frac{π}{12}$,0)
C.当x∈[0,$\frac{π}{3}$]时,fx)的值域为[1,$\sqrt{3}$]
D.先将函数f(x)的图象的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$个单位后得到函数y=2cos(4x+$\frac{π}{6}$)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$({2-\sqrt{2}})π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin2x+2sin2x.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)将函数f(x)的图象向左平移$\frac{π}{12}$个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是从1,2,3三个数中任取一个数,b是从0,1,2三个数中任取的一个数,则该函数存在递减区域的概率为(  )
A.$\frac{7}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案