精英家教网 > 高中数学 > 题目详情
13.在(1-2x3)(1+x)5的展开式中,x4系数为-5.

分析 写出二项展开式的通项公式,求出(1+x)5的x4,x的系数,即可求得结论.

解答 解:(1+x)5的展开式的通项公式为:Tr+1=${C}_{5}^{r}{x}^{r}$
∴(1-2x3)(1+x)5的展开式中x4的系数为1×${C}_{5}^{4}$+(-2)×${C}_{5}^{1}$=-5
故答案为:-5

点评 本题考查二项式定理,考查二项式展开式中通项的求法,及用通项公式求一系列的问题,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求(1-2x)5(1+3x)4展开式中按x的升幂排列的第3项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出下列不等式表示的平面区域:
(1)x+y≤2;
(2)2x-y>2;
(3)y≤-2;
(4)x≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三棱锥P-ABC中,△ABC为等边三角形,且PA=8,PB=PC=$\sqrt{73}$,AB=3,则三棱锥P-ABC外接球的表面积为76π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知⊙O是△ABC的外接圆,直径为2R,试用R与∠A、∠B、∠C的三角比来表示三角形的三条边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10的展开式的中间项为-252${x}^{\frac{5}{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=λ,an+1=$\frac{2}{{a}_{n}+1}$(n∈N*
(1)若a1>a2,求实数λ的取值范围;
(2)若λ≠-2,记bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$,求数列{bn}的通项公式;
(3)是否存在实数λ,使得数列{an}是递减数列?若存在,求出实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{m}$=(1,sin(ωx+$\frac{π}{3}$)),$\overrightarrow{n}$=(2,2sin(ωx-$\frac{π}{6}$))(其中ω为正常数),设f(x)=$\overrightarrow{m}•\overrightarrow{n}$-2,且函数f(x)的图象的相邻两个对称中心的距离为$\frac{π}{2}$.
(1)求当$\overrightarrow{m}∥\overrightarrow{n}$时,tanx的值;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

同步练习册答案