【题目】已知函数
(1)若在上恒成立,求a的取值范围;
(2)求在[-2,2]上的最大值M(a).
【答案】(1);(2).
【解析】分析:(1)先根据绝对值定义去掉绝对值,并分离变量得当x>1时,;当x<1时,,当x=1时,a∈R;再根据函数最值得a的取值范围;(2)先根据图像得函数最大值只能在f(1),f(2),f(-2)三处取得,再根据三者大小关系以及对应对称轴确定最大值取法,最后用分段函数书写.
详解:(1)即(*)对x∈R恒成立,
①当x=1时,(*)显然成立,此时a∈R;当x≠1时,(*)可变形为,
令
②当x>1时,,③当x<1时,,所以,故此时.
综合①②③,得所求实数a的取值范围是.
(2)得:f(1)=0,f(2)=3-a,f(-2)=3-3a
①当时,∵,,∴,;
②当时,∴,,即
③当时,∵,,∴,
即所以
科目:高中数学 来源: 题型:
【题目】随着国民生活水平的提高,利用长假旅游的人越来越多,其公司统计了2012到2016年五年间本公司职工每年春节期间外出旅游的家庭数,具体统计数据如表所示:
年份x | 2012 | 2013 | 2014 | 2015 | 2016 |
家庭数y | 6 | 10 | 16 | 22 | 26 |
(1)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程y=bx+a,判断它们之间是否是正相关还是负相关;
(2)根据所求的直线方程估计该公司2019年春节期间外出的旅游的家庭数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)当时,求函数的单调区间;
(2)若函数在区间上有1个零点,求实数的取值范围;
(3)是否存在正整数,使得在上恒成立?若存在,求出k的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线 =1(a>0,b>0)的右焦点F作一条直线,当直线斜率为l时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为( )
A.(1, )
B.(1, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的 ,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx, ,过点 作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点和直线:,设圆的半径为1,圆心在直线上.
(Ⅰ)若圆心也在直线上,过点作圆的切线.
(1)求圆的方程;(2)求切线的方程;
(Ⅱ)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数据显示,某公司2018年上半年五个月的收入情况如下表所示:
月份 | 2 | 3 | 4 | 5 | 6 |
月收入(万元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根据上述数据,在建立该公司2018年月收入(万元)与月份的函数模型时,给出两个函数模型与供选择.
(1)你认为哪个函数模型较好,并简单说明理由;
(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ﹣ρsinθ﹣25=0,曲线W: (t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com