精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a
x
(a>0)
(1)判断它的奇偶性;
(2)求证:f(x)在(0,
a
)上是减函数.
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)函数为奇函数.确定函数的定义域,利用奇函数的定义,即可得到结论;
(2)设x1、x2∈(0,
a
),且x1<x2,按照取值、作差、变形定号,下结论的步骤进行证明,作差后要因式分解,判断f(x1)与f(x2)的大小.
解答: (1)解:函数为奇函数.
函数的定义域为(-∞,0)∪(0,+∞)
∵f(-x)=-x-
a
x
=-(x+
a
x
)=-f(x)
∴f(x)是奇函数;
(2)证明:设x1、x2∈(0,
a
),且x1<x2,则
f(x1)-f(x2)=x1+
a
x1
-x2-
a
x2
=
(x1-x2)(x1x2-a)
x1x2

∵x1、x2∈(0,
a
),∴x1-x2<0,0<x1x2<a,
(x1-x2)(x1x2-a)
x1x2
>0
∴f(x1)-f(x2)>0
∴f(x1)>f(x2
∴(x)在(0,
a
)上是减函数.
点评:本题考查函数的性质,考查学生的计算能力;利用定义证明函数的单调性按照取值、作差、变形定号,下结论的步骤进行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知车轮旋转的角度与时间的平方成正比,如果车辆启动后车轮转动第一圈需要0.8s,求转动开始后第3.2s时的瞬时角速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx+b的图象与x轴、y轴分别相交于点A、B,
AB
=2
i
+2
j
,函数g(x)=x2-x-6;
(1)求k、b的值;
(2)当满足f(x)>g(x)时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-|x|+2a-1(a为常数).
(1)若a=1,作出函数f(x)的图象;
(2)若函数f(x)在区间(1,+∞)上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin
α
2
-cos
α
2
=-
2
5
π
2
<α<π,求tan
α
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(2α+β)+2sinβ=0,求证:tanα=3tan(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1+x
1-x
+lg(3-4x+x2)
的定义域为M.
(1)求M;
(2)当x∈M时,求f(x)=2x+2+3•4x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长为4,宽为3的矩形ABCD的外接圆为圆O,在圆O内任取M,点M在△ABC内的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)中,离心率e=
6
3
,过点A(0,-b)和B(a,0)的直线和原点的距离为
3
2

(1)求椭圆的方程;
(2)已知定点E(-1,0),若直线l:y=kx+2(k≠0)与椭圆交于C,D两点,是否存在k的值,使以CD为直径的圆恰过点E?若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案