精英家教网 > 高中数学 > 题目详情
1.若f(x)+f(1-x)=4,则f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*)=2n+2.

分析 由已知中f(x)+f(1-x)=4,利用倒序相加法求和,可得答案.

解答 解:令S=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1),
则S=f(1)+f($\frac{n-1}{n}$)+…+f($\frac{1}{n}$)+f(0),
∵f(x)+f(1-x)=4,
∴2S=4(n+1),
故f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*)=2n+2
故答案为:2n+2.

点评 本题考查的知识点是抽象函数及其应用,倒序相加法求和,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a(lnx-2x2)-3x,a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a=-1时,函数g(x)=tx2-4x+1满足对任意的x1∈(0,e],都存在x2∈[0,1],使得f(x1)≥g(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若二项式${({{x^2}-\frac{2}{x}})^n}$展开式的二项式系数之和为8,则该展开式的系数之和为(  )
A.-1B.1C.27D.-27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c满足2a=$\frac{1}{a}$,log2b=$\frac{1}{b}$,lnc=$\frac{1}{c}$,则(  )
A.a<c<bB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,E是AB的中点,P是△ABC(包括边界)内任一点,则$\overrightarrow{AD}$•$\overrightarrow{EP}$的取值范围是[-9,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)的定义域为D,如果存在正实数k,使得对于任意x∈D,都有x+k∈D.且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k的型增函数”,己知f(x)是定义在R上的奇函数.且在x>0时.f(x)=|x-a|-2a,若f(x)为R上的“2017的型增函数”,则实数a的取值范围是(-∞,$\frac{2017}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直线l为4x-5y+40=0;直线l1为4x-5y+5=0,直线l2为4x-5y+m=0,l1与椭圆相交于A、B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x∈[-$\sqrt{3}$,$\sqrt{3}$],y∈R+,则(x-y)2+($\sqrt{3-{x}^{2}}$-$\frac{9}{y}$)2的最小值为$21-6\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=2sin({ωx+φ})({0<ω<12,|φ|<\frac{π}{2}})$,若$f(0)=-\sqrt{3}$,且函数f(x)的图象关于直线$x=-\frac{π}{12}$对称,则以下结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{3}$
B.函数f(x)的图象关于点$({\frac{7π}{9},0})$对称
C.函数f(x)在区间$({\frac{π}{4},\frac{11π}{24}})$上是增函数
D.由y=2cos2x的图象向右平移$\frac{5π}{12}$个单位长度可以得到函数f(x)的图象

查看答案和解析>>

同步练习册答案