精英家教网 > 高中数学 > 题目详情
10.在数列{an}中,a1=1,an+1-an=2,则a6的值为11.

分析 利用等差数列的通项公式即可得出.

解答 解:∵an+1-an=2,∴数列{an}是公差为2的等差数列.
a6=1+2×5=11,
故答案为:11.

点评 本题考查了等差数列的性质及其通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{b}满足$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$+$\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,求数列{bn}的通项公式:,
(Ⅲ)在(Ⅱ)条件下.设cn=2n+λbn.问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(文)函数y=Asin(ωx+φ)(A>0,ω>0,$0≤φ≤\frac{π}{2}$)在x∈(0,9π)内只能取到一个最大值和一个最小值,且当x=π时,y有最大值4,当x=8π时,y有最小值-4.
(1)求出此函数的解析式以及它的单调递增区间;
(2)是否存在实数m,满足不等式$Asin(ω\sqrt{m+1}+φ)>Asin(ω\sqrt{-m+4}+φ)$?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三个数12,x,3成等比数列,则实数x=±6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若5把钥匙中只有两把能打开某锁,则从中任取一把钥匙能将该锁打开的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对具有线性相关关系的变量x、y,有一组观测数据(xi,yi)(i=1,2,3,…,8),其回归方程为y=$\frac{1}{6}$x+a,且x1+x2+x3+…+x8=6,y1+y2+y3+…+y8=9,则实数a的值是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=4tanxsin(\frac{π}{2}-x)cos(x-\frac{π}{3})-\sqrt{3}$;
(1)求f(x)的定义域与最小正周期;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上的单调性与最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角θ的终边在射线y=2x(x≤0)上,则sinθ+cosθ=-$\frac{3\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.合肥一中高一年级开展研学旅行活动,高一1、2、3、4、5五个班级,分别从西安、扬州、皖南这三条线路中选一条开展研学活动,每条路线至少有一个班参加,且1、2两个班级不选同一条线路,则共有(  )种不同的选法.
A.72B.108C.114D.124

查看答案和解析>>

同步练习册答案