精英家教网 > 高中数学 > 题目详情
17.若正项等比数列{an}满足a1=1,a4=2a3+3a2,则an=3n-1.其前n项和Sn=$\frac{1}{2}({3}^{n}-1)$.

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:设正项等比数列{an}的公比为q>0,∵a1=1,a4=2a3+3a2
∴q3=2q2+3q,化为q2-2q-3=0,解得q=3.
则an=3n-1
其前n项和Sn=$\frac{{3}^{n}-1}{3-1}$=$\frac{1}{2}({3}^{n}-1)$.
故答案分别为:3n-1;$\frac{1}{2}({3}^{n}-1)$.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sin$\frac{ω}{2}$x,$\frac{1}{2}$),$\overrightarrow{b}$=(cos$\frac{ω}{2}$x,-$\frac{1}{2}$)(ω>0,x≥0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的第n(n∈N*)个零点记作xn(从左至右依次计数).
(1)若ω=$\frac{1}{2}$,求x2
(2)若函数f(x)的最小正周期为π,设g(x)=|$\overrightarrow{a}$+$\overrightarrow{b}$|,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=cos(ωx+φ)的图象向左平移$\frac{π}{2}$个单位,若所得图象与原图象重合,则ω的值不可能等于(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}、{bn}的每一项都是正数,a1=12,b1=8且2$\sqrt{{b}_{n}}$=$\sqrt{{b}_{n-1}}$+$\sqrt{{b}_{n+1}}$(n≥2)又bn,an,bn+1成等比数列一切n∈N*恒成立
(1)求数列{an}、{bn}的通项公式;
(2)设Cn=2n-1-(an-bn),若cn的前n项和为Sn,不等式Sn>nλbn对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2-ax+b(a>0,b>0)有两个不同的零点m,n,且m,n和-2三个数适当排序后,即可成为等差数列,也可成为等比数列,则a+b的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}各项均为正数,a1=$\frac{1}{2}$,且对任意的n∈N*,都有an+1=an+can2(c>0).
(1)求$\frac{c}{1+c{a}_{1}}$+$\frac{c}{1+c{a}_{2}}$+$\frac{1}{{a}_{3}}$的值;
(2)若c=$\frac{1}{2016}$,是否存在n∈N*,使得an>1,若存在,试求出n的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,则C${\;}_{8}^{m}$+C${\;}_{8}^{5-m}$=84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复数z1∈{z||z-i|=|z+1|},z2∈{z||z-2|=1},求|z1-z2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若方程E:$\frac{x^2}{1-m}-\frac{y^2}{m-2}$=1表示焦点在y轴上的双曲线,则实数m的取值范围为(  )
A.(1,2)B.(-∞,1)∪(2,+∞)C.(-∞,2)D.(1,+∞)

查看答案和解析>>

同步练习册答案