精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$2sin(2x+\frac{π}{6})$
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域,并求f(x)取得最大值时x的值.

分析 (1)利用函数y=Asin(ωx+φ)的周期为$\frac{2π}{ω}$,得出结论.
(2)利用正弦函数的定义域和值域,求得f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域,并求f(x)取得最大值时x的值.

解答 解(1)函数f(x))=$2sin(2x+\frac{π}{6})$ 的最小正周期T=$\frac{2π}{2}$=π.
(2)由-$\frac{π}{6}$≤x≤$\frac{π}{2}$,知-$\frac{π}{3}$≤2x≤π,故$-\frac{π}{6}≤2x+\frac{π}{6}≤\frac{7π}{6}$,∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$,故$-1≤2sin(2x+\frac{π}{6})≤2$,
∴f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域[-1,2].
当 2x+$\frac{π}{6}$=$\frac{π}{2}$时,即 x=$\frac{π}{6}$时,f(x)取得最大值为2.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.某校开展“向感动中国2015年度人物学习”主题墙报评比,9位评委为A班的墙报,给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx+ax2-(2a+l)x+1,其中a>0.
(1)求函数f(x)的单调区间;
(2)对于任意的x∈[a,+∞),都有f(x)≥a3-a-$\frac{1}{8}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a∈R,若$\frac{1+ai}{2+i}$为实数,则a=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形,
(1)证明EH∥平面BCD
(2)求证:AB∥平面EFGH,
(3)若AB=6,CD=9,求四边形EFGH周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的离心率为$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z=$\frac{a+i}{2}$(a∈R)且z的实部与虚部互为相反数,则a的值为(  )
A.1B.aC.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(1)命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
(2)“x=1”是“x2-4x+3=0”的充要条件;
(3)若p∧q为假命题,则p、q均为假命题.
(4)对于命题p:?x0∈R,x${\;}_{0}^{2}$+2x0+2≤0,则¬p:?x∈R,x2+2x+2>0.
上面四个命题中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$.
(1)求a的值;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.

查看答案和解析>>

同步练习册答案