精英家教网 > 高中数学 > 题目详情
11.已知正数x,y满足 $\frac{2}{x}+\frac{3}{y}=1$,则2x+3y的最小值为25.

分析 利用“1”的代换,结合基本不等式,即可得出结论.

解答 解:∵正数x,y满足 $\frac{2}{x}+\frac{3}{y}=1$,
∴2x+3y=(2x+3y)($\frac{2}{x}$+$\frac{3}{y}$)=13+$\frac{6x}{y}$+$\frac{6y}{x}$≥13+12=25,
当且仅当x=y时取等号,即2x+3y的最小值为25.
故答案为:25.

点评 本题考查基本不等式的运用,考查“1”的代换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+2的图象的某一个对称点,并利用对称中心的上述定义,可得到$f(-1)+f(-\frac{9}{10})+…+f(0)+…+f(\frac{9}{10})+f(1)$=42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{a}$,$\overrightarrow{b}$不共线,且λ$\overrightarrow{a}$+μ$\overrightarrow{b}$=$\overrightarrow{0}$(λ,μ∈R),则(  )
A.$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=$\overrightarrow{0}$B.λ=μ=0C.λ=0,$\overrightarrow{b}$=$\overrightarrow{0}$D.$\overrightarrow{a}$=$\overrightarrow{0}$,μ=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知锐角△ABC中,内角A,B,C所对应的边分别为a,b,c,且满足:b2-a2=ac,c=2,则a的取值范围是($\frac{2}{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-ax-a)ex
(1)讨论f(x)的单调性;
(2)若a∈(0,2),对于任意x1,x2∈[-4,0],都有$|f({x_1})-f({x_2})|<4{e^{-2}}+m{e^a}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:
使用时间(单位:天)10:2021:3031:4041:5051:60
个数1040805020
若以频率为概率,现从该批次机械元件随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为(  )
A.$\frac{13}{16}$B.$\frac{27}{64}$C.$\frac{25}{32}$D.$\frac{27}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对某一批产品进行抽样检查,采取一件一件地抽查.若抽查4件未发现不合格产品,则停止检查并认为该批产品合格.若在查到第四件或在此之前发现不合格产品也停止检查,并认为该批产品不合格.假定合格概率为0.9;
(1)求该随机变量X的分布列和数学期望;
(2)通过抽样检查,认为该批产品不合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.把正整数排列成如图1所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图2所示的三角形数阵,设aij为图2所示三角形数阵中第i行第j个数,若amn=2017,则实数对(m,n)为(45,41).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex-ae2x(a∈R)恰有两个极值点x1,x2(x1<x2).
(1)求实数a的取值范围;
(2)求证:f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案