精英家教网 > 高中数学 > 题目详情
16.某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:
使用时间(单位:天)10:2021:3031:4041:5051:60
个数1040805020
若以频率为概率,现从该批次机械元件随机抽取3个,则至少有2个元件的使用寿命在30天以上的概率为(  )
A.$\frac{13}{16}$B.$\frac{27}{64}$C.$\frac{25}{32}$D.$\frac{27}{32}$

分析 基本事件总数n=${C}_{200}^{3}$,由题意得:使用寿命在30天以上共150个,由此求出至少有2个元件的使用寿命在30天以上包含的基本事件个数m=${C}_{50}^{1}{C}_{150}^{2}+{C}_{150}^{3}$,从而能求出至少有2个元件的使用寿命在30天以上的概率.

解答 解:随机抽查的200个机械元件,从该批次机械元件随机抽取3个,
基本事件总数n=${C}_{200}^{3}$,
由题意得:使用寿命在30天以上共150个,
至少有2个元件的使用寿命在30天以上包含的基本事件个数m=${C}_{50}^{1}{C}_{150}^{2}+{C}_{150}^{3}$,
故至少有2个元件的使用寿命在30天以上的概率是:
P=$\frac{{{C}_{50}^{1}C}_{150}^{2}{+C}_{150}^{3}}{{C}_{200}^{3}}$=$\frac{27}{32}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数$f(x)=ln({{x^2}+\sqrt{{x^2}+1}})$可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是(  )
A.①③B.①③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|2x≥16},B={x|log2x≥a}.
(1)当a=1时,求A∩B;
(2)若A是B的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,M是线段A1C1的中点,若四面体M-ABD的外接球的表面积为36π,则正方体棱长为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正数x,y满足 $\frac{2}{x}+\frac{3}{y}=1$,则2x+3y的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且4Sn+3=an2+2an
(Ⅰ)当n≥7时,a>0恒成立,求证:数列{an}从第7项起,成等差数列;
(Ⅱ)在(Ⅰ)的条件下,若数列{an}的前7项为等比数列,求数列{an}的前7项和S7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a为实数,函数f(x)=ex-x+a,x∈R.
(1)求f(x)在区间[-1,2]上的最值;
(2)求证:当a>-1,且x>0时,${e^x}>\frac{1}{2}{x^2}-ax+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某儿童公园设计一个直角三角形游乐滑梯,AO为滑道,∠OBA为直角,OB=20米,设∠AOB=θrad,一个小朋友从点A沿滑道往下滑,记小朋友下滑的时间为t秒,已知小朋友下滑的长度s与t2和sinθ的积成正比,当$θ=\frac{π}{6}$时,小朋友下滑2秒时的长度恰好为10米.
(1)求s关于时间t的函数的表达式;
(2)请确定θ的值,使小朋友从点A滑到O所需的时间最短.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.分别从集合M{1,2,3}和集合N={4,5,6}中各取一个数,则这两个数之和为偶数的概率为$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案